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ABSTRACT 58 

Gamma-aminobutyric acid (GABA) is the primary inhibitory neurotransmitter in human brain. GABA level 59 

varies substantially across individuals and this variability is associated with inter-individual differences in visual 60 

perception. However, it remains unclear whether the association between GABA level and visual perception 61 

reflects a general influence of visual inhibition, or whether GABA level of different cortical regions selectively 62 

influences perception of different visual features. To address this, we studied how GABA level in parietal and 63 

occipital cortices related to inter-individual differences in size, orientation, and brightness perception, in a group 64 

of healthy young male participants. We used visual contextual illusion as a perceptual assay, since it dissociates 65 

perceptual content from stimulus content and its magnitude reflects the effect of visual inhibition. Across 66 

individuals, we observed selective correlations between GABA level and the magnitude of contextual illusion. 67 

Specifically, parietal GABA level correlated with size illusion magnitude but not with orientation or brightness 68 

illusion magnitude; in contrast, occipital GABA level correlated with orientation illusion magnitude but not with 69 

size or brightness illusion magnitude. Our findings reveal a region- and feature-dependent influence of GABA 70 

level on human visual perception. Parietal and occipital cortices contain, respectively, topographic maps of size 71 

and orientation preference in which neural responses to sizes or orientations are modualted by intra-regional 72 

lateral connections. We propose that these lateral connections may underlie the selective influence of GABA 73 

level on visual feature perception. 74 

SIGNIFICANCE STATEMENT 75 

Gamma-aminobutyric acid (GABA), the primary inhibitory neurotransmitter in human visual system, varies 76 

substantially across individuals and this variability is linked to inter-individual differences in many aspects of 77 

visual perception. The widespread influence of GABA raises the question of whether inter-individual variability 78 

in GABA reflects an overall variability in visual inhibition and has a general influence on visual perception, or 79 

whether GABA level of different cortical regions has selective influence on perception of different visual 80 

features. Here we report a region- and feature-dependent influence of GABA level on human visual perception. 81 

Our findings suggest that GABA level of a cortical region selectively influences perception of visual features 82 

that are topographically mapped in this region through intra-regional lateral connections. 83 

INTRODUCTION 84 
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The inhibitory neurotransmitter Gamma-aminobutyric acid (GABA) plays a central role in visual processing 85 

ranging from neural selectivity and neural response gain control, to synaptic plasticity and network oscillation 86 

(Katzner et al., 2011; Lehmann et al., 2012; Priebe et al., 2008). GABA level (measured using Magnetic 87 

Resonance Spectroscopy) varies substantially across human individuals and this variability may contribute to 88 

inter-individual differences in visual processing and visual perception. Indeed, a higher GABA level is 89 

associated with higher visual discrimination ability, lower susceptibility to distraction, stronger surround 90 

suppression and stronger interocular suppression (Edden et al., 2009; Lunghi et al., 2015; Sandberg et al., 2014; 91 

Sandberg et al., 2016; Vanloon et al., 2013; Yoon et al., 2010). Moreover, in neurological disorders such as 92 

attention-deficit / hyperactivity disorder and schizophrenia, both an abnormal level of GABA and an abnormal 93 

performance in perceptual tasks are observed (Edden et al., 2012; Moult, 2009; Yoon et al., 2010). 94 

This wide range of observations raises the question of whether inter-individual variability in GABA reflects an 95 

overall variability in visual inhibition and has a general influence on visual perception, or whether GABA level 96 

of different cortical regions has selective influence on perception of different visual features. One hypothesis is 97 

that, GABA level of each cortical region is uniquely determined in each individual, possibly by a combination 98 

of genetic and environmental factors (Bachtiar et al., 2015; Lunghi et al., 2015; Marenco et al., 2010; Taniguchi 99 

et al., 2011). As such, GABA level of different cortical regions may exhibit dissociable inter-individual 100 

variability and influence perception of different visual features separately. An alternative hypothesis is that, 101 

GABA level of different cortical regions may co-vary as a result of common embryonic origins or shared 102 

subcortical GABAergic projections (Caputi et al., 2013; Chen et al., 2015; Dammerman et al., 2000; Jinno et al., 103 

2007; Picardo et al., 2011), and may influence perception of different visual features concurrently.  104 

To test these two alternative hypotheses, we studied how GABA level of parietal and occipital cortices related to 105 

inter-individual differences in size, orientation, and brightness perception. Occipital cortex contains a map of 106 

orientation preference in which individual neurons respond preferentially to specific orientation and neighboring 107 

neurons to adjacent orientations; by contrast, parietal cortex contains a map of size preference in which 108 

individual neuronal populations respond preferentially to specific size of a visually presented object and 109 

neighboring neurons to adjacent sizes (Harvey et al., 2015; Yacoub et al., 2007). Since neurotransmitters are 110 

contained in and released at synapses, GABA level of a cortical region may influence visual feature perception 111 

through lateral connections within the region. These lateral connections link neighboring neurons with similar 112 

feature preferences, and underlie contextual illusions where the perceived feature (e.g., orientation, size) of a 113 
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visual stimulus is modulated by the stimulus surrounding it (Bosten et al., 2010; Cannon et al., 1996; Kapadia et 114 

al., 1999; Stettler et al., 2002; Song et al., 2013). We therefore used contextual illusion as a perceptual assay, 115 

hypothesizing that selective correlation may be observed between GABA level of a cortical region and 116 

contextual illusion for visual features topographically mapped in this region. Specifically, parietal and occipital 117 

GABA level may correlate selectively with the magnitude of size and orientation illusion. 118 

MATERIALS AND METHODS 119 

Participants  120 

Thirty-seven healthy volunteers (aged 20 to 40, all males, females ineligible due to menstrual cycle) gave 121 

written informed consent to participate in this study that was approved by the local ethics committee, De 122 

Videnskabsetiske Komitéer for Region Midtjylland, Denmark. All participants had normal or corrected-to-123 

normal vision, and no neurological or psychiatric history. The Magnetic Resonance Spectroscopy data of four 124 

participants were contaminated by signal from lipids and the psychophysics data of three participants were 125 

outliers of the normal distribution (Shapiro-Wilk test). These data were therefore excluded from further analysis. 126 

Magnetic resonance spectroscopy measure of GABA 127 

Neuroimaging took place in a Siemens Trio 3T MRI scanner. Structural MRI data were acquired using a T1-128 

weighted MPRAGE sequence (TR: 2420 msec; TE: 3.7 msec; resolution: 1 mm isotropic; scanning time: 5.5 129 

min) and were used to guide the voxel placement in Magnetic Resonance Spectroscopy (MRS). Resting GABA 130 

measures were acquired from a 2 cm isotropic voxel in the parietal lobe (TR: 2500 msec; TE: 68 msec; 240 edit 131 

on and edit off averages; scan time: 20 min) and a 3 cm isotropic voxel in the occipital lobe (TR: 2500 msec; TE: 132 

68 msec; 96 edit on and edit off averages; scan time: 8 min), using MEGA-PRESS method (Edden et al., 2007; 133 

Mescher et al., 1998). To compensate for the size differences between the two voxels, the parietal voxel had a 134 

longer scan time (20 min) than the occipital voxel (8 min). An even longer scan time (40 min) could lead to a 135 

better compensation, however the subject motion would be a drawback.  136 

We used a standard resting state protocol where participants had their eyes open and faced the insider of the 137 

scanner with no mirrors attached or no visual stimuli presented (Edden et al., 2009; Ogorman et al., 2011). MRS 138 

measure of resting GABA varies little across day or even months (Evans et al., 2010; Near et al., 2014). The 139 
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high test-retest reliability suggests that the scanning order will not bias the measures. Nevertheless, to minimize 140 

the between-subject variance of no interest, we kept the scanning order identical for all participants, collecting 141 

data for the occipital voxel first and the parietal voxel second. The parietal voxel was placed on the anterior part 142 

of the superior parietal lobe with its anterior border in parallel to the postcentral gyrus. The occipital voxel was 143 

placed to cover the calcarine sulcus bilaterally with its anterior border in alignment with the parietal-occipital 144 

sulcus. Care was taken to avoid the inclusion of the scalp and/or the tentorium cerebelli in the voxels. 145 

The MEGA-PRESS method measures GABA concentrations through the acquisition of two spectra: one with an 146 

editing pulse targeting the C3-GABA peak at 1.9 ppm (edit on), and one with an editing pulse targeting the 147 

water peak on the symmetrical side at 7.5 ppm (edit off). By averaging the two spectra, the Creatine (Cr) peak at 148 

3.0 ppm was quantified. By subtracting the two spectra, the C4-GABA peak at 3 ppm was quantified. This C4-149 

GABA peak is often referred to as GABA+, since a coupled macromolecule (MM) resonance at 3 ppm is co-150 

edited and contributes to the measured signal. Due to the limitation of the MEGA-PRESS sequence, the exact 151 

MM contribution is difficult to estimate or remove. A theoretical model has been proposed to subtract MM 152 

contribution post-hoc (Murdoch et al, 2011). Nevertheless, this technique could introduce additional variability 153 

into the estimated GABA values, and is thus rarely used (see discussion in Mullins et al., 2014). Newer 154 

sequences such as MEGA-SPECIAL (Near et al., 2011) and SPECIAL (Near et al., 2013) aims to remove MM 155 

contribution by editing and modelling, respectively. However, both sequences have other drawbacks such as the 156 

imperfect lipid suppression. The raw GABA value is subject to bias from day-to-day scanner-related variation. 157 

For an unbiased estimate of GABA, a normalization of raw GABA value to Cr is typically applied (Mullins et 158 

al., 2012), since Cr resonates around the same frequency (3 ppm) as GABA and is not affected by disturbances 159 

that depend on the resonance frequency. The ratio GABA+/Cr was calculated to quantify GABA level. 160 

The analysis of MRS data was performed by author JUB who was blind to the psychophysics data, and 161 

constituted part of a database that have been reported in previous studies (Near et al., 2014; Sandberg et al., 162 

2014; Sandberg et al., 2016). The MRS data were first preprocessed in MATLAB with FID-A software for 163 

motion corruption removal, drift correction and phasing, and then analyzed in jMRUI software with AMARES 164 

package (Edden et al., 2007; Mescher et al., 1998; Simpson et al., 2015). Data were visually inspected for noise, 165 

line broadening, voxel misplacement and lipid contamination. Four participants who had spectra with large lipid 166 

contamination failed to pass the visual inspection and were excluded from further analysis. The quality of the 167 

included spectra was evaluated by calculating signal-to-noise ratio (SNR), line width and fit uncertainty. 168 
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Examples of typical spectra are shown in Fig. 1. SNR was calculated using the difference spectrum following 169 

the phase adjustment such that the N-acetylaspartate (NAA) peak was upright with a phase of 0 degree. Signal 170 

was calculated as the maximal intensity of the NAA peak in the difference spectrum; noise was calculated as the 171 

standard deviation of the noise in the signal-free spectrum, following a baseline correction to remove any 1st 172 

and 2nd order baseline variations. SNR was 108 for the parietal voxel and 226 for the occipital voxel. Line 173 

width was calculated by measuring the full width at half maximum of the NAA peak in the difference spectrum. 174 

Mean line width was 4.8 Hz for the parietal voxel and 5.4 Hz for the occipital voxel. Fit uncertainty was 175 

measured as the SD/amplitude ratio output by jMRUI. Mean SD/amplitude ratio was 0.04 for the parietal voxel 176 

and 0.03 for the occipital voxel.  177 

Psychophysics measure of contextual illusion 178 

Psychophysics took place in a dark room. Visual stimuli were presented on a 17-inch LCD monitor (spatial 179 

resolution: 1024 x 768 pixels; temporal resolution: 60 Hz) and viewed through a chin rest. The magnitudes of 180 

size illusion (Ebbinghaus illusion), orientation illusion (tilt illusion), and brightness illusion (simultaneous 181 

contrast illusion) were measured in separate experiments. The size illusion stimulus comprised two white circles 182 

(1° diameter), a reference one surrounded by sixteen small white circles (0.2° diameter) and a test one by seven 183 

large white circles (2° diameter), presented simultaneously for 500 msec on two sides of the fixation (3.85° 184 

eccentricity) with randomized spatial order. The orientation illusion stimulus comprised two circular gratings 185 

(45° orientation, 1.5° diameter, 2.5 cycles/° spatial frequency, 100% contrast), a reference one surrounded by an 186 

annular grating (60° orientation, 4.5° diameter, 2.5 cycles/° spatial frequency, 100% contrast) and a test one 187 

with no surround. The brightness illusion stimulus comprised two gray circles (50% luminance, 1.5° diameter), 188 

a reference one surrounded by white annulus (4.5° diameter) and a test one by black annulus (4.5° diameter).  189 

To minimize the confounding factors such as decision factors (Gold et al., 2012; Vogels et al., 1986), we kept 190 

the psychophysical procedures identical for all three illusions. Participants first performed a match-to-standard 191 

session in which they manually adjusted the size, orientation, or luminance of the test stimulus till it matched 192 

the perceived size, orientation, or luminance of the reference stimulus, and a visual discrimination session in 193 

which the size, orientation, and luminance discrimination threshold was measured through a standard 2-up-1-194 

down staircase. The point of subjective equality measured from the match-to-standard session and the visual 195 

discrimination threshold measured from the staircase session were used to guide the choices of stimulus 196 
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parameters in the subsequent two-alternative-forced choice session. There, participants were asked on 112 trials 197 

to judge which central stimulus was larger (for size illusion), more tilted (for orientation illusion), or brighter 198 

(for brightness illusion). The size, orientation, or luminance of the reference stimulus was kept constant; that of 199 

the test stimulus was varied between seven values (16 trials per value) around the point of subjective equality 200 

acquired from match-to-standard session, with a step size equal to visual discrimination threshold.  201 

The data from the two-alternative-forced choice session were fitted with psychometric function to measure the 202 

50% threshold point where the two central stimuli appeared perceptually equal despite their physical difference. 203 

The goodness-of-fitting (R-square) was 0.963 ± 0.033 for orientation illusion, 0.956 ± 0.041 for size illusion, 204 

and 0.960 ± 0.033 for brightness illusion. It did not differ significantly between illusions (size illusion versus 205 

orientation illusion: T(29) = 1.03, p = 0.313; size illusion versus brightness illusion: T(29) = 0.47, p = 0.640; 206 

orientation illusion versus brightness illusion: T(29) = 0.28, p = 0.785), or correlate significantly with GABA 207 

(size illusion and parietal GABA: r = -0.194, p = 0.304; size illusion and occipital GABA: r = 0.143, p = 0.451; 208 

orientation illusion and parietal GABA: r = 0.244, p = 0.194; orientation illusion and occipital GABA: r = 0.142, 209 

p = 0.456; brightness illusion and parietal GABA: r = -0.224, p = 0.234; brightness illusion and occipital GABA: 210 

r = 0.174, p = 0.359). The physical difference between the two central stimuli at the 50% threshold point was 211 

calculated to quantify the illusion magnitude.  212 

To account for the influence of Weber’s law (Shen, 2013), we used the log transform of the illusion magnitude 213 

and the semi-log plots (Fig. 3~5) to assess inter-individual differences. Since the magnitude of orientation 214 

illusion is subject to oblique effect (Clifford, 2014), we performed additional control experiments in a group of 215 

twenty healthy volunteers (aged 21 to 35, 11 females) to test the influence of stimulus orientation (cardinal 216 

versus oblique) on the measure of inter-individual differences. We found that although the illusion magnitude 217 

was weaker for cardinal condition than oblique condition (t(19) = 20.362, p < 10-13), the illusion magnitude were 218 

highly correlated between the two conditions (r = 0.866, p < 10-6). This observation suggested that inter-219 

individual differences in orientation illusion magnitude were not biased by oblique effect.  220 

Statistics 221 

Pearson’s correlation can capture the linearity in the relation between two variables, whereas Spearman’s rank 222 

correlation can only reflect whether two variables are monotonically related or not. For example, Spearman’s 223 
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correlation coefficient will return the same result of 1 for two variables that both monotonically increase, 224 

regardless of whether their rates of increase are linearly or non-linearly correlated; by contrast, Pearson’s 225 

correlation coefficient can capture the difference between these two conditions. As such, Pearson’s correlation 226 

coefficient is a more suitable test for studying the difference in correlation coefficient between conditions (e.g., 227 

between size illusion and parietal versus occipital GABA). Application of Pearson’s correlation requires the 228 

data to satisfy normal distribution. Shapiro-Wilk test failed to refute the assumption of normality for parietal 229 

GABA level (W = 0.952, p = 0.187), occipital GABA level (W = 0.962, p = 0.295), size illusion magnitude (W 230 

= 0.937, p = 0.072), orientation illusion magnitude (W = 0.985, p = 0.942), or brightness illusion magnitude (W 231 

= 0.960, p = 0.314). Therefore, Pearson’s correlation was used throughout the study to test the relations between 232 

variables, with age regressed out.  233 

RESULTS 234 

We found that GABA level in parietal cortex (0.252 ± 0.035) and GABA level in occipital cortex (0.299 ± 0.042) 235 

exhibited dissociable inter-individual variability (Fig. 2; r = -0.066, 95% C.I. of r = [-0.372, 0.250], p = 0.730, N 236 

= 30). Subsequently, we studied how parietal GABA level versus occipital GABA level contributed to inter-237 

individual differences in size illusion (Ebbinghaus illusion), orientation illusion (tilt illusion), and brightness 238 

illusion (simultaneous contrast illusion). 239 

Across individuals, we observed a positive correlation between the magnitude of size illusion and parietal 240 

GABA level (Fig. 3; r = 0.395, 95% C.I. of r = [0.117, 0.610], p = 0.031, N = 30). By contrast, we did not 241 

observe any significant correlation between the magnitude of size illusion and occipital GABA level (Fig. 3; r = 242 

-0.038, 95% C.I. of r = [-0.317, 0.250], p = 0.841, N = 30). Moreover, compared to occipital GABA level, 243 

parietal GABA level showed a significantly higher correlation with size illusion magnitude (t(27) = 2.369, p = 244 

0.018). These results suggest a selective correlation between size illusion and parietal GABA.  245 

Conversely, across individuals, the magnitude of orientation illusion exhibited a positive correlation with 246 

occipital GABA level (Fig. 4; r = 0.367, 95% C.I. of r = [0.042, 0.599], p = 0.046, N = 30), but not with parietal 247 

GABA level (Fig. 4; r = 0.002, 95% C.I. of r = [-0.363, 0.355], p = 0.990, N = 30). Moreover, occipital GABA 248 

level correlated with orientation illusion magnitude significantly higher than parietal GABA level did (t(27) = 249 

1.990, p = 0.047). These results suggest a selective correlation between orientation illusion and occipital GABA. 250 
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For the brightness illusion, we did not observe any significant correlation across individuals between the illusion 251 

magnitude and parietal GABA level (Fig. 5; r = -0.149, 95% C.I. of r = [-0.456, 0.163], p = 0.431, N = 30) or 252 

occipital GABA level (Fig. 5; r = -0.017, 95% C.I. of r = [-0.377, 0.391], p = 0.927, N = 30). Accordingly, the 253 

correlation between parietal GABA level and brightness illusion magnitude was not significantly different from 254 

the correlation between occipital GABA level and brightness illusion magnitude (t(27) = 0.690, p = 0.490). 255 

These results suggest that GABA level does not influence all types of contextual illusion, and its correlation 256 

with size or orientation illusion may relate with the way how stimulus size or orientation is cortically processed. 257 

DISCUSSION 258 

Taken together, our study reveals a region- and feature-dependent influence of neurotransmitter level on human 259 

visual perception. We show that inter-individual variability in parietal GABA level correlated with size illusion 260 

magnitude but not with orientation or brightness illusion magnitude; in contrast, inter-individual variability in 261 

occipital GABA level correlated with orientation illusion magnitude but not with size or brightness illusion 262 

magnitude. Our findings suggest that inter-individual variability in GABA does not reflect a general variability 263 

in visual inhibition; instead, GABA level of different cortical regions has selective influence on perception of 264 

different visual features. This influence is likely to be exerted through lateral connections within the cortical 265 

region and is observed specifically for visual features mediated by such connections.  266 

In occipital cortex, neurons exhibit orientation preference such that their response is the strongest for a preferred 267 

orientation and gradually decays as the stimulus orientation deviates from this preferred orientation (Ringach et 268 

al., 2002). Neurons preferring adjacent orientations are cortically adjacent to one another and are connected by 269 

intra-regional lateral connections (Bock et al., 2011; Li et al., 2012; Yacoub et al., 2007). This topographical 270 

organization of lateral connections allows the orientation preference of neurons to be modulated by the activity 271 

of their adjacent neurons, and the level of occipital GABA to affect the degree of modulation (Burr et al., 1981; 272 

Chavane et al., 2011; Eysel et al., 1990; Fitzpatrick, 2000; Gilbert et al., 1996; Morrone et al., 1987; Smith et al., 273 

2006; Stettler et al., 2002). This neural-level modulation may then give rise to perceptual-level modulation, 274 

where the perceived orientation of a stimulus is modulated by the orientation of the stimulus surrounding it 275 

(Schwartz et al., 2007; Song et al., 2013). If so, the correlation between orientation illusion magnitude and 276 

occipital GABA level could be a perceptual reflection of the link between neural-level modulation and GABA. 277 
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Whereas orientation preference is topographically mapped in occipital cortex with neurons preferring more 278 

similar orientations being more highly connected, there is no topographic map of size preference in occipital 279 

cortex (Chklovskii et al., 2004; Swindale, 2000). As such, a local GABA influence, exerted through lateral 280 

connections within occipital cortex, is likely to be specific to orientation illusion and not generalizable to size 281 

illusion. Just as the topographic map of orientation preference is prominent in occipital cortex (Kaschube et al., 282 

2010; Wolf et al., 1998; Yacoub et al., 2007), a topographic map of size preference exists in parietal cortex 283 

where individual neuronal populations respond preferentially to specific size and adjacent neurons to adjacent 284 

sizes (Harvey et al., 2015). By contrast, there is no map of orientation preference in parietal cortex. Therefore, a 285 

local GABA influence, exerted through lateral connections within parietal cortex, would be specific to size 286 

illusion and not generalizable to orientation illusion. Similar to the topogrpahical maps of orientation preference 287 

and size preference in visual cortices, neurons in the retina exhibit preference for stimulus luminance and are 288 

topographically connected by their luminance preference. Possibly, the inter-individual differences in brightness 289 

illusions may associate with inter-individual variability in retinal GABA (Lukasiewicz et al., 1998; Wu, 2010). 290 

Moreover, since neural responses to visual features are modulated not only by intra-regional lateral connections 291 

but also by inter-regional feedback connections (Fitzpatrick, 2000; Smith et al., 2006), the lack of correlation 292 

between brightness illusion and occipital or parietal GABA could also indicate a predominant contribution of 293 

inter-regional (as opposed to intra-regional) modulation to this illusion (Kinoshita, 2001; Perna et al., 2005).  294 

This account, that GABA level of a cortical region influences perception of visual features topographically 295 

mapped in this region, would be able to explain the reported correlations between occipital GABA level and 296 

orientation discrimination threshold (Edden et al., 2009). The intra-regional modulation exerted through lateral 297 

connections may not only shift the orientation preference of neurons, and give rise perceptual shifts in 298 

orientation illusion, but also sharpen the orientation tuning of neurons, and give rise perceptual sharpenings in 299 

orientation discrimination (Benyishiai et al., 1995; Orban et al., 1998; Somers et al., 1995; Song et al., 2013; 300 

Song et al., 2015). As such, the influence of occipital GABA level on orientation illusion could be mirrored in 301 

orientation discrimination (Song et al., 2013). In addition to orientation preference, ocular preference is also 302 

topographically mapped in occipital cortex, where individual neurons respond preferentially to stimulus from a 303 

specific eye, and adjacent neurons to opposite eyes (Adams et al., 2007; Dechent et al., 2000; Menon et al., 304 

1997). There, lateral connections would link neurons with opposite ocular preference, allowing the influence of 305 

occipital GABA on orientation perception to generalize to binocular perception. This would explain the reported 306 

decrease in both occipital GABA and interocular suppression after monocular deprivation (Lunghi et al., 2015). 307 
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This account, that GABA level of a cortical region influences perception of visual features topographically 308 

mapped in this region, further predicts a correlation between parietal GABA level and numerosity perception. 309 

Just as occipital cortex is crucial for processing low-level visual features and contains maps of orientation 310 

preference and ocular preference, parietal cortex is important for processing high-level visual features and 311 

contains maps of size preference and numerosity preference (Bueti et al., 2009; Chklovskii et al., 2004; Dehaene 312 

et al., 2007; Dormal et al., 2008; Harvey et al., 2013; Harvey et al., 2015; Kadosh et al., 2009; Nieder et al., 313 

2009; Pinel et al., 2004; Roitman et al., 2007; Roitman et al., 2012; Walsh, 2003). The lateral connections in 314 

parietal cortex are likely to link neighboring neurons with similar numerosity preference, which would allow 315 

parietal GABA to influence numerosity discrimination and numerosity illusion (Almeida et al., 2007; Bosten et 316 

al., 2010; Dormal et al., 2008; Pinel et al., 2004). While the posterior (e.g., occipital, parietal) part of the cortex 317 

is involved in sensory processing, a topographic map of conceptual knowledge was discovered in prefrontal 318 

cortex, suggesting a potential role of frontal GABA in conceptual categorization (Constantinescu et al., 2016). It 319 

would be of interest for future studies to test the links between parietal GABA and numerosity perception, as 320 

well as between frontal GABA and conceptual categorization. 321 

322 
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FIGURE LEGENDS 490 

Figure 1. MRS Spectra. MRS measure of resting GABA was acquired in separate experiment runs, from a 491 

parietal voxel (blue) placed on the anterior part of the superior parietal lobe with its anterior border parallel to 492 

the postcentral gyrus, and a occipital voxel (red) placed to cover the calcarine sulcus bilaterally with its anterior 493 

border in alignment with the parietal-occipital sulcus. Examples of MRS spectra from ten randomly selected 494 

participants are shown. The GABA peak is seen at 3 ppm and the inverted NAA peak at around 2 ppm. 495 

Figure 2. Parietal and occipital GABA. Parietal and occipital GABA levels were plotted against each other, 496 

illustrating a lack of inter-individual correlation between these two variables. Each data point represents a 497 

participant. Statistics are Pearson’s correlation and bootstrap results. 498 

Figure 3. GABA and size illusion. In the Ebbinghaus illusion, two physically identical central circles appear to 499 

have different perceived size as a result of the surrounding context of either smaller or larger circles. The 500 

magnitude of Ebbinghaus illusion for each participant was plotted in semi-log graph against their parietal or 501 

occipital GABA level, illustrating a positive correlation between size illusion magnitude and parietal GABA 502 

level, as well as a lack of significant correlation between size illusion magnitude and occipital GABA level. 503 

Each data point represents a participant. Statistics are Pearson’s correlation and bootstrap results. 504 

Figure 4. GABA and orientation illusion. In the tilt illusion, two physically identical central gratings appear to 505 

have different perceived orientation as a result of their immediate surroundings. The magnitude of tilt illusion 506 

for each participant was plotted in semi-log graph against their parietal or occipital GABA level, illustrating a 507 

positive correlation between orientation illusion magnitude and occipital GABA level, as well as a lack of 508 

significant correlation between orientation illusion magnitude and parietal GABA level. Each data point 509 

represents a participant. Statistics are Pearson’s correlation and bootstrap results. 510 

Figure 5. GABA and brightness illusion. In the simultaneous contrast illusion, two physically identical central 511 

circles appear to have different brightness as a result of their immediate surroundings. The magnitude of 512 

simultaneous contrast illusion for each participant was plotted in semi-log graph against their parietal or 513 

occipital GABA level, illustrating a lack of significant correlation between brightness illusion magnitude and 514 

either parietal or occipital GABA level. Each data point represents a participant. Statistics are Pearson’s 515 

correlation and bootstrap results. 516 
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