
Software and resources for experiments and data analysis of
MEG and EEG data

Data from magnetoencephalography (MEG) and electroencephalography (EEG) is
extremely rich and multifaceted. For example, in a standard MEG recording with 306
sensors and a sampling rate of 1,000 Hz, 306,000 data points are sampled every second.
To be able to answer the question, which was the ultimate reason for acquiring the data,
thus necessitates efficient data handling. Luckily, several software packages have been
developed for handling MEG and/or EEG data. To name some of the most popular: MNE-
Python; FieldTrip; Brainstorm; EEGLAB and SPM. These are all available under a public
domain licence, meaning that they can be run, shared and modified by anyone.
Commercial software released under proprietary licences include BESA and CURRY. It is
important to be aware of that for clinical diagnosis of for example epilepsy, certified
software is required FieldTrip, MNE-Python, Brainstorm, EEGLAB and SPM for example
cannot be used for that. In this chapter, the emphasis will be on MNE-Python and FieldTrip.
This will allow users of both Python and MATLAB (or alternatively GNU Octave to code
along as the chapter unfolds. As a general remark, all that MNE-Python can do, FieldTrip
can do and vice versa – though with some small difference. A full analysis going from raw
data to a source reconstruction will be presented, illustrated with both code and figures
with the aim of providing newcomers to the field a stepping stone towards doing their own
analyses of their own datasets.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27988v2 | CC BY 4.0 Open Access | rec: 21 Oct 2019, publ: 21 Oct 2019

Software and resources for experiments and data analysis of MEG and EEG data

Lau M. Andersen1,2*

1 Center of Functionally Integrative Neuroscience, Aarhus University, Denmark

2 NatMEG, Karolinska Institutet, Stockholm, Sweden

* Corresponding author: lmandersen@cfin.au.dk

1

2

3

4

5

6

7

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27988v2 | CC BY 4.0 Open Access | rec: 21 Oct 2019, publ: 21 Oct 2019

Software and resources for
experiments and data analysis

Lau Møller Andersen

1. Introduction
Data from magnetoencephalography (MEG) and electroencephalography (EEG) is extremely rich

and multifaceted. For example, in a standard MEG recording with 306 sensors and a sampling rate

of 1,000 Hz, 306,000 data points are sampled every second. To be able to answer the question,

which was the ultimate reason for acquiring the data, thus necessitates efficient data handling.

Luckily, several software packages have been developed for handling MEG and/or EEG data. To

name some of the most popular: MNE-Python (Gramfort et al. 2013); FieldTrip (Oostenveld et al.

2011); Brainstorm (Tadel et al. 2011); EEGLAB (Delorme and Makeig 2004) and SPM (Friston et

al. 2007). These are all available under a public domain licence, meaning that they can be run,

shared and modified by anyone. Commercial software released under proprietary licences include

BESA (besa.de) and CURRY (compumedics.com.au/products/curry/). It is important to be aware of

that for clinical diagnosis of for example epilepsy, certified software is required FieldTrip, MNE-

Python, Brainstorm, EEGLAB and SPM for example cannot be used for that.

In this chapter, the emphasis will be on MNE-Python and FieldTrip. This will allow users of both

Python (python.org) and MATLAB (mathworks.com), (or alternatively GNU Octave

(gnu.org/software/octave/) to code along as the chapter unfolds. As a general remark, all that MNE-

Python can do, FieldTrip can do and vice versa – though with some small difference. A full analysis

going from raw data to a source reconstruction will be presented, illustrated with both code and

figures. Before going to the software, however, some general remarks about single subject analysis

and group analysis together with a short recapitulation of MEG and EEG sensor space and source

space are in place.

1.1.Single subject analysis and group analysis

MEG and EEG (henceforth when no distinction between the two is needed, MEEG will be used)

studies often focus on questions or hypotheses about how different experimental factors influence

patterns of MEEG activity, and by inference the underlying brain activity giving rise to these

patterns. By designing contrasts between experimental factors, the unique contributions of each

experimental factor can be singled out. In principle, studies on single subjects would be sufficient to

discover these unique contributions, but there are two limiting factors. The first one is that MEEG

signals of interest are very weak in terms of signal-to-noise ratio (SNR), and the second is that most

scientific questions aspire to say something about the population as a whole. With a group of

subjects, a statistical inference to the general population is possible, and the SNR increases

significantly when more subjects are included. For group analyses, it becomes even more necessary

to efficiently handle data processing and analysis, because now beside the space (sensors) and time

(sampling rate) dimensions, furthermore the subject dimension has to be considered, increasing the

complexity of the data even more. Single subject data has to be processed individually however

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27988v2 | CC BY 4.0 Open Access | rec: 21 Oct 2019, publ: 21 Oct 2019

before group measures can be applied. Therefore, a full analysis will be run on data from a single

subject, followed by a short discussion of relevant literature for analysing groups of subjects.

1.2.Sensor space and source space

An important distinction in MEEG is the one between the sensor space and the source space.

Simplifying the matter, the sensor space is the space in which the data is actually recorded, in

gradiometers and magnetometers for MEG and in electrodes for EEG. The source space is a model

of the underlying source configuration in the brain that gives rise to the pattern of activity in sensor

space, also called source localization. Thus, there is nothing in the source space, which is also not in

the sensor space. The source space is rather another perspective on the data in the sensor space.

Historically, most EEG studies have been analysed in only the sensor space, whereas MEG studies

more often, but not always, include the source space. The reason that this distinction is emphasized

is that the processing of MEG and EEG data respectively differs the most when bringing the data

from sensor space to source space.

1.3.Unique issues to MEG and EEG respectively

Analysis of MEG and EEG data respectively differ mainly in two regards. First, how the sensors are

fixed relative to the head of the subject, and second, how the electric potentials and the magnetic

fields respectively spread through the brain, skull and skin compartments of the head. In MEG, the

sensors are fixed in a helmet into which the subject inserts his head, whereas in EEG a cap with

electrodes is fixed to the head of the subject. Thus, MEG sensors will be in different positions

relative to the head shapes of subjects, whereas for EEG due to the standard, e.g. the 10-20 system,

ways of arranging electrodes on the cap, the electrodes will share the same positions relatively

speaking even if subject head shapes differ. The problem of the fixed array of MEG is amplified if

the subject moves; in MEG that would mean that MEG sensors are moving relative to the subject’s

head, whereas in EEG the cap just follows the movement of the head, unless the cap itself is moved.

Now for the second issue: the spread of the magnetic field can be assumed to spread

homogeneously throughout the brain, skull and skin compartments of the head, whereas the electric

potential spreads through these compartments with different conductivities. Due to the low

conductivity of the skull, the electric potential is smeared on the scalp. Thus to create precise source

models based on EEG data, precise and careful anatomical modelling is needed. For MEG, due to

the homogeneous spread of the magnetic field, creating precise source models is more simple.

Furthermore, creating source models of the data also eliminates the issue of sensors being in

different positions relative to the heads of subjects. This is because the source space of each subject

can be expressed in a shared template space, which can be compared directly between subjects.

These issues will be emphasized in the analysis below, but otherwise MEG and EEG analyses can

be carried out with very similar strategies.

2. Data analysis
The data analysis examples below will use open data from Simanova et al. (2010) (EEG) and Lam

et al. (2016) (MEG). The scripts used are similar to earlier protocol publications of mine (Andersen

2018a, b). Scripts were tested with FieldTrip version 20190716 and MNE-Python version 0.18.2

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27988v2 | CC BY 4.0 Open Access | rec: 21 Oct 2019, publ: 21 Oct 2019

respectively and can be found in my repository on GitHub:

https://github.com/ualsbombe/language_electrified.

2.1.EEG single subject analysis

The data from a single subject used in this analysis was retrieved from ftp://ftp.fieldtriptoolbox.org/

pub/fieldtrip/tutorial/SubjectEEG.zip. The data is associated with a study on how representations of

words might differ dependent on whether they were elicited by pictures, spoken words or written

words. A short description of the dataset and the recording will follow. For further details, the reader

is referred to the original article (Simanova et al. 2010). The relevant script is called

single_subject_analysis.m and is found in the language_EEG folder of the GitHub repository,

https://github.com/ualsbombe/language_electrified.

2.1.1. Short description of dataset

Three semantic categories of words were used: animals and tools, which were the target categories

of analysis, and a third task category that differed between subjects, which was either clothing or

vegetables. Each category contained four exemplars, and each exemplar in each target category was

presented eighty times in each of three modalities: auditory, visual (picture) and orthographical.

Task exemplars were repeated sixteen times and required a button press with the right index finger.

Visual and orthographical stimuli were presented for 300 ms and were followed by a blank screen

with a duration between 1,000-1,200 ms. A fixation cross was presented during auditory

stimulation, and stimulation was followed by a blank screen with a similar duration to the visual

and orthographic modalities. The subject whose dataset explored here was exposed to the clothing

category. The task category will not be analysed, but event-related responses will be calculated for

each of the remaining six possible combinations, that is: three modalities and two target semantic

categories.

2.1.2. EEG recording

EEG was continuously registered using a 64-channel ActiCap system (Brain Products GmbH)

online bandpass filtered at 0.2-200 Hz and sampled at 500 Hz. 60 electrodes were placed

equidistantly on the scalp. The data was registered against a reference on the right mastoid. An

additional electrode measure the voltage on the left mastoid. The electrooculogram (EOG) was

measured using electrodes placed horizontally and vertically around the eyes.

2.1.3. Scripting

Here, I am going to follow the analysis steps applied by Simanova et al. (2010). First, a

recommendation – make sure that you are producing easily reproducible scripts, so you and others

can replicate the analysis or apply changes to the analysis without having to start all over. A general

piece of advice is to always start off cleaning the workspace and restoring the path of MATLAB to

your default (Code Snippet 1). This way you are making sure that the script is self-contained, and

that your analysis will not be dependent on variables create elsewhere.

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27988v2 | CC BY 4.0 Open Access | rec: 21 Oct 2019, publ: 21 Oct 2019

Code Snippet 1 An example of how a script can be started, making sure that all variables are
cleaned, and that MATLAB path used is the default path. Note that changes have to be made to fit
the user’s directory structure. Ideally, this should be the only change that should be made between
operating systems. On macOS the “home_dir” is usually /Users/<your_name>” and on Windows it
is C:\Users\<your_name>.

To explore the EEG data and the trigger codes in there, we can run the following Code Snippet (2)

and look at its output (Output 1).

Code Snippet 2 Reading in the information about the triggers contained in the data. These
indicate among other things when responses were made and when stimulations appeared. Setting
eventtype to ‘?’ lists all the available triggers.

Output 1 Output from Code Snippet 2. In total there 1,570 events, and of two types “Stimulus” and
“Response”.

121

122

123

124

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27988v2 | CC BY 4.0 Open Access | rec: 21 Oct 2019, publ: 21 Oct 2019

The triggers that we will use here are listed in Table 1:

Orthographic Visual Auditory

Animals S111; S121; S131; S141 S112; S122; S132; S142 S113; S123; S133; S143

Tools S151; S161; S171; S181 S152; S162; S172; S182 S153; S163; S173; S183

Table 1 The trigger codes for the four different kinds of stimuli for each of the two target categories
for each of the three modalities.

Note also that each Code Snippet presented here is initiated with two percentage signs. This means

that MATLAB arranges this as a block of code. All the lines in a code can be evaluated by placing

the cursor inside the block and pressing Ctrl-ENTER. This is a good way of dividing your analysis

into logical steps. Note also that most FieldTrip functions (starting with ft) take a configuration as

its first argument. The configuration variable is as a standard named cfg and is a structure variable.

FieldTrip functions, e.g. ft_definetrial (Code Snippet 3), expect and allow different fields to be

present. In Code Snippet 3 dataset and trialdef are fields of cfg. Note that fields can have their own

fields such as eventtype here being a field of trialdef, which in turn is a field of cfg.

2.1.4. Reading in and segmenting data

We can take the raw data and segment it into epochs around events of interest. We follow Simanova

et al. (2010) in having segments of 1 s with 300 ms of data before the stimulation and 700 ms of

data after the stimulation. First, we define the trial structure (Code Snippet 3) and subsequently we

preprocess the data.

Code Snippet 3 Defining a trial structure using the raw dataset (cfg.dataset) and indicating what
event type and what event values (Output 1) should be used. cfg_def contains 1,570 events, but
only 1,200 were defined as trials of interest. Explore cfg_def for further details.

The next step will be to preprocessing and read in the data based on the trial definition just given

(Code Snippet 4; cfg_def).

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27988v2 | CC BY 4.0 Open Access | rec: 21 Oct 2019, publ: 21 Oct 2019

Code Snippet 4 Reading in and preprocessing the data, here re-referencing and band-pass
filtering

Voltage is always expressed as relative to a reference point. In the recording this was M2 (53), but

we are now choosing it to be the average of M1 and M2. Afterwards we are applying a band-pass

filter from 1-30 Hz, aiming to attenuate any part of the signal outside this range. Event-related

responses are seldom outside this range. The applications of ft_preprocessing on cfg_def results in a

data structure of 1,200 trials (Output 2).

Output 2 The preprocessed data. Among other fields, it contains trial, which has the data. Each
cell has 65 rows and 500 columns, corresponding to 65 electrodes and 500 time points. trialinfo
contains 1,200 numbers indicating the trigger value for each trial.

2.1.5. Extracting EOG channels

In this analysis, so-called bipolar EOG channels were created based on the EEG electrodes

horizontally and vertically around the eyes (Code Snippet 5).

142

143

144

145

146

147

148

149

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27988v2 | CC BY 4.0 Open Access | rec: 21 Oct 2019, publ: 21 Oct 2019

Code Snippet 5 Creating the bipolar EOG channels, removing the extraneous channels and finally
appending the data, such that it consists of the 57 EEG channels and the 2 EOG channels.

2.1.6. Rejecting based on objective threshold

We follow Simanova et al. (2010) in using an objective threshold of 150 µV meaning that they

rejected each epoch containing a voltage above this value at any time, at any channel, be it EEG or

EOG (Code Snippet 6). We make a common average reference of the EEG data as well, which is

necessary to do for the way that FieldTrip has implemented source reconstruction.

150

151

152

153

154

155

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27988v2 | CC BY 4.0 Open Access | rec: 21 Oct 2019, publ: 21 Oct 2019

Code Snippet 6 Code used for applying an objective threshold to the data and re-referencing to a
common average.

2.1.7. Create the Event-Related Potentials

The final processing step will be to calculate the Event-Related Potentials (ERPs). An ERP is

created simply by averaging the trials (Code Snippet 7) for each time point. The code below (Code

Snippet 7) will create an ERP for each of the six categories.

156

157

158

159

160

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27988v2 | CC BY 4.0 Open Access | rec: 21 Oct 2019, publ: 21 Oct 2019

Code Snippet 7 Creating the ERPs for each of the two semantic categories across modalities

2.1.8. Plotting the ERPs

We can subsequently plot the ERPs. Here, three kinds are plotted (Code Snippet 8; Fig. 1). Some

extra text and comments have been added to inspire readers, but rough plots for exploring can be

invoked by a minimal cfg (Code Snippet 9).

161

162

163

164

165

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27988v2 | CC BY 4.0 Open Access | rec: 21 Oct 2019, publ: 21 Oct 2019

Code Snippet 8 Making (pretty) plots of ERPs

166

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27988v2 | CC BY 4.0 Open Access | rec: 21 Oct 2019, publ: 21 Oct 2019

Fig. 1 Plots of the auditory response. A: Plots of all channels, where it is clear that the biggest
responses are centred around the central sensors. B: A central electrode (1), highlighted in A. It
shows the N1 auditory response plus a second response after ~250 ms. C: The N1 response (120
ms) as a topography clearly centred on central sensors

167

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27988v2 | CC BY 4.0 Open Access | rec: 21 Oct 2019, publ: 21 Oct 2019

Code Snippet 9 Simple code for invoking (rough) plots

2.1.9. Difference waves

We can also compute the differences between animals and tools for each of the three modalities

(orthographic, visual and auditory) (Code Snippet 10).

Code Snippet 10 Code for creating difference waves.

These can be plotted using the same tools as above, but will not be done here.

2.1.10. Source reconstruction

Below, I’ll give an example of source reconstruction using templates. For optimal source

reconstruction, it is preferable to have a magnetic resonance image of subjects’ brains and to

accurately know the position of electrodes on the subjects’ heads. This can be known for examples

by digitizing the positions of electrodes using a Polhemus FASTRAK or by a reconstruction

procedure based on using photographs (Clausner et al. 2017). Here, I’ll use the templates distributed

with FieldTrip (Code Snippet 11).

168

169

170

171

172

173

174

175

176

177

178

179

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27988v2 | CC BY 4.0 Open Access | rec: 21 Oct 2019, publ: 21 Oct 2019

180

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27988v2 | CC BY 4.0 Open Access | rec: 21 Oct 2019, publ: 21 Oct 2019

Code Snippet 11 Loading a standard head model, the standard positions of the electrodes and a
standard source model. The electrodes are subsequently projected onto the surface. It is extremely
important that one always plots these three things together to assess whether things look
reasonable. Otherwise, the source reconstruction will not be meaningful.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27988v2 | CC BY 4.0 Open Access | rec: 21 Oct 2019, publ: 21 Oct 2019

Fig. 2 The alignment of the source model (the brain inside the head), the head model (the skin,
skull and brain compartments) and the electrodes. Note that without the projection, many of the
electrodes are in wrong place, even inside the brain. Always plot to see if structures are properly
aligned! A = Anterior, P = Posterior.

2.1.11. Lead field

The next step is to create the lead field (or the forward solution) (Code Snippet 12). This contains

information how the sources (found in the source model) link to the electrodes. More precisely, it is

calculated for each source, what electric potential each electrode would pick given that that source

was active with a current of 1 Am. How the electric current propagates throughout the three

compartments is dependent on the conductivities of the tissues that the current passes through, here

skin, skull and brain are modelled. Since the conductivity of the skull is a lot lower than that of the

skin and the brain, the electric potential is smeared out. It is therefore important to accurately model

these different compartments for the EEG. In this case, I have used a template.

Code Snippet 12 Code for creating the leadfield

181

182

183

184

185

186

187

188

189

190

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27988v2 | CC BY 4.0 Open Access | rec: 21 Oct 2019, publ: 21 Oct 2019

Fig. 3 Depiction of lead fields for two sources illustrated in light blue. Size is only for ease of
identification. The lighter the red colour, the more electric potential is picked up at a given
electrode. Left: a central source linking to a high degree to the electrodes just above it, but in
general it links to all electrodes. Right: a posterior source linking to the highest degree to the
electrodes just above it and less so to the others. On the frontal electrodes, it does not contribute
much A = Anterior, P = Posterior

2.1.12. Compute the minimum norm estimate

In the next step (Code Snippet 13), we are going to compute the minimum norm estimate (MNE).

The MNE computes the solution that explains the scalp pattern (e.g. Fig. 1C) for each time point. It

needs information about where electrodes are (cfg.elec), where sources are and how they are linked

to the electrodes (the lead field) (cfg.sourcemodel). It is necessary to regularise the data going into

the MNE. If the data is not regularised, then even the noise will be fitted, since the MNE has to

explain all the data. Fitting noise is called over-fitting. To avoid over-fitting, regularisation is thus

applied, in effect smoothing the data (and the noise) over a larger region. Regularisation is

controlled by cfg.mne.lambda. Higher lambda values mean more regularisation, thus more

smoothing. Here, I have chosen only “little” regularisation, but do investigate what happens when

lambda is increased. I have also scaled the source covariance with the noise covariance

(cfg.mne.scalesourcecov). See Code Snippet 14 for how to plot the MNE on the cortical surface.

191

192

193

194

195

196

197

198

199

200

201

202

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27988v2 | CC BY 4.0 Open Access | rec: 21 Oct 2019, publ: 21 Oct 2019

Code Snippet 13 Code for running minimum norm estimates on all six event related potentials.

Code Snippet 14 Code for plotting the N100 on the cortical surface

203

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27988v2 | CC BY 4.0 Open Access | rec: 21 Oct 2019, publ: 21 Oct 2019

Fig. 4 Localization of the N100 response on the cortical surface using MNE

2.1.13. Alternative localization using dipole fits – lead field and
source model

Another way to do the source localization is to assume a small number of sources and estimate their

positions, orientations and amplitudes. In the MNE solution above, we on the contrary assumed a

lot of sources and assumed that they were located on the cortical surface. The way we will be doing

this is that we will use a so-called volumetric grid of sources (Code Snippet 15) overlain on the

brain compartment of the headmodel. For all the sources in the grid that are inside the brain

compartment, we will estimate a leadfield. Try plotting the source model yourself using

ft_plot_mesh and ft_plot_headmodel.

Code Snippet 15 Creating a lead field and a source model in preparation for dipole fitting. The
channels are the ones defined in cfg.elec, the sources are 0.01 m (10 mm) apart (cfg.resolution
and cfg.sourcemodel.unit), and the active electrodes are found in cfg.channel.

2.1.14. Alternative localization using dipole fits – dipole fit

We are going to find the two dipoles, symmetric over the x-axis, that optimally explain the scalp

distributions for the electric potential in the time range 110-130 ms. We are going to assume fixed

positions of the two dipoles during this time range. We are going to use a grid search followed by

non-linear optimization to do the fit (Code Snippet 16). During the grid search, the optimal position

to begin the non-linear optimization from is found. Thereafter, the optimal position, orientation and

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27988v2 | CC BY 4.0 Open Access | rec: 21 Oct 2019, publ: 21 Oct 2019

amplitude of the dipoles are non-linearly optimized. This is done by reducing the difference by the

actually measured scalp distribution and the scalp distribution that the fitted dipoles would produce.

Code Snippet 16 Doing the dipole fit on the time range from 110-130 ms (cfg.latency) using the
newly created source model and earlier created head model. The dipoles are modelled as being in
one position during the whole time range (cfg.model). Two dipoles (cfg.numdipoles) are fitted, and
we require them to be symmetric across the x-axis (cfg.symmetry).

2.1.15. Alternative localization using dipole fits – plot dipole fit

We can now plot the dipoles (Code Snippet 17) on slices of the template brain using ft_plot_dipole

and ft_plot_slice (Fig. 5).

Code Snippet 17 Plotting the dipoles on three orthogonal slices of the template brain.

220

221

222

223

224

225

226

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27988v2 | CC BY 4.0 Open Access | rec: 21 Oct 2019, publ: 21 Oct 2019

Fig. 5 Position of dipoles – use MATLAB tools to rotate the plot to see depth and orientation of the
dipoles from different angles

2.1.16. Alternative localization using dipole fits – extract time
courses

Now that we have the positions of our dipoles, we can estimate their time courses, i.e. how they

develop over the whole epoch (-300-700 ms) (Code Snippet 18). We fit the dipoles again this time

without grid search since we will use the already fitted positions as the positions of the dipoles

(cfg.dip.pos). We will thus only fit the orientations and the amplitudes of the dipoles.

Code Snippet 18 We are estimating the time course for the whole epoch (cfg.latency) using
known positions (cfg.dip.pos)

227

228

229

230

231

232

233

234

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27988v2 | CC BY 4.0 Open Access | rec: 21 Oct 2019, publ: 21 Oct 2019

2.1.17. Alternative localization using dipole fits – plotting extracted
time courses

Finally, we will plot the extracted time courses of the two dipoles (Code Snippet 19). Note that we

divide the amplitudes with 1e6 to get everything in SI units. (The voltages were in µV). We see that

the right hemisphere dipole shows a stronger activation at around 100 ms, whereas the left one

shows a later peak around 200 ms (Fig. 6).

Code Snippet 19 Plotting the dipole time courses by getting the amplitudes (taking the norm of the
moments for each time point)

Fig. 6 Extracted time courses for the left and right hemisphere dipoles.

235

236

237

238

239

240

241

242

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27988v2 | CC BY 4.0 Open Access | rec: 21 Oct 2019, publ: 21 Oct 2019

2.2.Summary of analysis

We have gone from raw EEG data through preprocessing and averaging to obtain ERPs. Then using

template anatomical data, we source reconstructed the signal from the ERPs using a distributed

solution (MNE) and a sparse solution (dipole fitting). Both methods localized an auditory response

over the auditory cortex after around 100 ms.

2.3.Single subject MEG analysis – MNE-Python

In the following example, I will showcase a MEG analysis of responses related to reading words

either in a well-formed sentence or in a scrambled sentence (Lam et al. 2016; Schoffelen et al.

2019). The dataset can be got from http://hdl.handle.net/11633/di.dccn.DSC_3011020.09_236. The

subject sub-V1002 is used.

MNE-Python will be used. It is recommended to follow the installation instructions on:

https://martinos.org/mne/stable/install_mne_python.html. In the present analysis, I have used the

Integrated Development Environment (IDE) Spyder. This can be gotten from the Anaconda

distribution as advocated in the installation link. The relevant scripts are called

single_subject_analysis.py and single_subject_analysis.sh and are found in the language_MEG

folder of the GitHub repository, https://github.com/ualsbombe/language_electrified.

2.3.1. Short description of dataset

Two conditions were used. Either subjects were presented visually with a sentence or a scrambled

version of the words in that sentence. All stimuli were presented at the centre of the screen within a

visual angle of 4 ° inside a magnetically shielded room. Each trial began with a fixation cross

presented for a jittered duration between 1,200 and 2,200 ms. Then each word, one at a time, were

presented with a blank screen of 300 ms in between them. 10% of the 120 trials were followed by a

yes/no question to make sure that subjects were paying attention

2.3.2. MEG recording

MEG data were collected with a 275 axial gradiometer system (CTF). It was sampled at 1,200 Hz

and online lowpass-filtered at 300 Hz. Horizontal and vertical EOG and electrocardiogram (ECG)

were measured.

2.3.3. Set paths and import

First, we import the needed packages, mne, matplotlib and mayavi. The latter two allows for

plotting what is processed using mne.. The function join is also imported from os.path, which

allows for creating full paths easily (akin to MATLAB’s fullfile) (Code Snippet 20).

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27988v2 | CC BY 4.0 Open Access | rec: 21 Oct 2019, publ: 21 Oct 2019

Code Snippet 20 Setting up the prerequisites for the MNE-Python analysis

2.3.4. Find events in the raw data

First, we read in the metadata from the raw files (Code Snippet 21). If we wanted to load the data,

preload should have been set to True. This way, data is only accessed when needed. Subsequently, I

find the events based on the trigger channels in the data. Subsequently, I shift the event forward 36

ms, since I know that there is a constant delay between the trigger and the actual presentation of the

word on screen. Finally, I define a dictionary that contains the four events that I will be interested

in. Sentences with or without a relative clause and their scrambled counterparts.

Code Snippet 21 Finding the events, time-shifting them and defining the ones of interest

2.3.5. Epoch the data

Subsequent, I epoch the raw data by choosing the time (tmin and tmax) around the events and

choosing the period (baseline) to demean the data with (Code Snippet 22). Subsequently, we discard

the information about relative clauses and collapse the categories in to well-formed sentences and

scrambled sentences.

274

275

276

277

278

279

280

281

282

283

284

285

286

287

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27988v2 | CC BY 4.0 Open Access | rec: 21 Oct 2019, publ: 21 Oct 2019

Code Snippet 22 Epoching the data with baselining for the data going into an evoked analysis

2.3.6. Creating evoked responses

Next, I will create the averages of the data epochs for each of the two categories (sentence and

scrambled) (Code Snippet 23).

Code Snippet 23 Looping through the events and averaging the epochs belonging to that event

Output 3 The two evokeds created with some information about them.

288

289

290

291

292

293

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27988v2 | CC BY 4.0 Open Access | rec: 21 Oct 2019, publ: 21 Oct 2019

2.3.7. Plotting evoked responses294

295

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27988v2 | CC BY 4.0 Open Access | rec: 21 Oct 2019, publ: 21 Oct 2019

Fig. 7 Evoked responses for scrambled and well-formed sentences. Well-formed sentences show
a stronger response at 400 ms A: Butterfly plots of axial gradiometers (note that the automatically
generate plot title says magnetometers). B&C: Topographical plots of the responses.

In the next step, I am going to create a source model estimating the source distribution for each time

point. This source reconstruction will be based on the individual subject’s anatomy as imaged with

magnetic resonance imaging (MRI). To do this, several steps of preprocessing the anatomical image

is required. MNE-Python functions are tightly linked with those of FreeSurfer

(http://www.freesurfer.net/). FreeSurfer functions are called from the Bash command language

(https://www.gnu.org/software/bash/). This can easily be accessed on most Linux operating systems

and on Apple’s macOS. It is not part of the standard applications for Windows at the moment. We

need FreeSurfer to run a segmentation of the brain.

2.4.MRI preprocessing

The two steps for FreeSurfer that are required are quite simple in terms of code. First, I am going to

using the function recon-all to import the data and create the default folder structure of FreeSurfer.

Secondly, I am going to run a full segmentation of the brain based on the image.

2.4.1. Importing the MRI

First, I set the (environment) variables, SUBJECTS_DIR and SUBJECT. Make sure that

SUBJECTS_DIR is an empty folder. Indicate on which path the MRI file exists (nii_path). Indicate

the file (filename) that should be imported. Finally, recon-all is called for importing the file.

openmp indicates the number of processors you want to allocate to this process (Code Snippet 24).

Code Snippet 24 Bash code for importing the MRI into the FreeSurfer preferred format. Make sure
that SUBJECTS_DIR and nii_path reflect your current paths.

This results in a folder named after SUBJECT being added to SUBJECTS_DIR. Inside this folder in

mri/orig, you should now find the file 001.mgz, which should be opened and inspected using tools

such as freeview (comes with the FreeSurfer installation). Most of the folders created are empty for

now, but will be filled during the next step.

2.4.2. Segmenting the brain

 The next step is to segment the brain, again using the FreeSurfer recon-all function. This time I add

the flag -all to indicate that I want to run the full algorithm. Be aware that this is a lengthy process,

which can be sped up using as many processors you have available (Code Snippet 25).

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27988v2 | CC BY 4.0 Open Access | rec: 21 Oct 2019, publ: 21 Oct 2019

Code Snippet 25 Bash code for doing the segmentation (or reconstruction) of the brain based on
the imported filed (001.mgz)

2.4.3. Creating the Boundary Element Method (BEM) model

The next step is to create a BEM, which I will carry out in four steps (Code Snippet 26).

First, I apply the watershed algorithm, which creates four boundaries or surfaces on the segmented

brain, the brain surface, the inner skull surface, the outer skull surface and the outer skin surface.

This can be called from MNE-Python using mne.bem.make_watershed_bem. This calls a FreeSurfer

function called mri_watershed. These surfaces which are put in the bem folder of SUBJECT can be

inspected using freeview. (This command may not work for you in the Spyder IDE).

Second, I create a source space based on the surface of the white matter (lh.white and rh.white) in

the surf folder of SUBJECT. Everything “above” this is assumed to be cortical areas where currents

giving rise MEG fields can be generated. spacing indicates how one wants the sources distributed

on the cortical surface. oct6 results in ~4000 sources for each hemisphere (Fig. 8). Note that this

restricts the solution to the cortical surface, e.g. we are not going source reconstruct, say, thalamic

activity.

Third, I create the BEM model using mne.bem.make_bem_model. This uses the surfaces created

with mne.bem.make_watershed_bem. For MEG, we rely only on inner_skull.surf, which MNE-

Python expects to find in the bem folder of the SUBJECT. For EEG, we would have had to model

three surfaces, the inner skull, the outer skull and the outer skin, since the different conductivities of

these surfaces smear the electric potential. The magnetic field is not smeared, if we assume that the

head is a sphere (or sphere-like) (Hämäläinen et al. 1993). Using just one surface is implicitly called

by only assigning one element to the list conductivity among the arguments passed to

mne.bem.make_bem_model.

Fourth, it is time to create the BEM solution using mne.bem.make_bem_solution. This calculates

how currents generated in the source space spread throughout the volume conductor, i.e. the BEM

model. The currents generated in the source space are what eventually gives rise to the measurable

magnetic field outside the head.

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27988v2 | CC BY 4.0 Open Access | rec: 21 Oct 2019, publ: 21 Oct 2019

Code Snippet 26 MR-preprocessing – running the watershed algorithm that separates the tissue
boundaries from one another (brain, skull and skin), followed by creating a source space with
equidistant sources on the cortical surface. Then a BEM model is made based on the brain
surface. Finally, the BEM solution is made.

348

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27988v2 | CC BY 4.0 Open Access | rec: 21 Oct 2019, publ: 21 Oct 2019

Fig. 8 The generated source space, the cortical surface, and BEM model (inner skull surface)
plotted by calling mne.SourceSpaces.plot. The yellow dots indicate point like sources equidistantly
spaced. A=anterior, P=posterior, R=right, L=left.

2.4.4. The forward solution

Finally, it is time to put all these things together to create the forward solution (Code Snippet 27),

which is a solution to the questions: “how do sources in the source space connect to the sensors in

the MEG sensor array?”. We can get the sensor positions from the metadata of the recording file,

and we already have the position of sources in the source space (Fig. 8). These are expressed in

different coordinate systems, so the next step is to align these two coordinate systems. This can be

done using the GUI accessed from mne.gui.coregistration (Fig. 9). Call mne.gui.coregistration with

the argument subjects_dir set to the library where your FreeSurfer reconstruction is found (Code

Snippets 24-25). The importance of doing co-registration is shown in Fig. 10. With a wrong co-

registration, the forward model will be wrong, resulting in the source reconstruction ending up

wrong as well.

349

350

351

352

353

354

355

356

357

358

359

360

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27988v2 | CC BY 4.0 Open Access | rec: 21 Oct 2019, publ: 21 Oct 2019

Fig. 9 The GUI for co-registration. The blue, red and green dots are the right pre-auricular point,
the left pre-auricular point and the nasion respectively. Normally, the head would not be defaced
allowing for a more precise placement of the nasion. In the case of having acquired extra
digitization points with a Polhemus Fastrak, it would be possible to use these to optimise the co-
registration further by for example using the Iterative Closest Point algorithm (right hand side)

Fig. 10 The importance of doing correct alignment. Left: head in CTF-coordinates and helmet in
Neuromag-coordinates. Right: Both in Neuromag-coordinates .

361

362

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27988v2 | CC BY 4.0 Open Access | rec: 21 Oct 2019, publ: 21 Oct 2019

Code Snippet 27 Creating the forward solution. This requires information about the positions of
the MEG sensors, gotten from raw.info, the positions of sources, gotten from src, and how the
currents generated at those sources spread, gotten from bem. Importantly, since the positions of
the MEG sensors and the source and BEM models are defined in two different coordinate systems,
an MEG and an MR coordinate system, these two need to be co-registered. The transformation
matrix aligning the two coordinate systems is in trans.

Output 4 fwd contains the solution for each set of channels (273) and each source (nsource x 3
directions = 24588). The output of fwd[‘sol’][‘data’] indicate the magnetic field (T) that a current of 1
A in a given source would induct in a sensor.

2.4.5. Inverse solution

The final step before doing the actual source reconstruction is to specify the inverse operator

applied (Code Snippet 28).

363

364

365

366

367

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27988v2 | CC BY 4.0 Open Access | rec: 21 Oct 2019, publ: 21 Oct 2019

Code Snippet 28 Creating the inverse operator. The noise covariance is needed to supply an
estimate of the noise in the recording

2.4.6. Estimate source time courses

Finally, we can estimate the time courses for each of the sources in our source space (n sources =

8196) (Code Snippet 29). That means that the data has the shape n sources x n samples (8196 x

781). For each sample, we can thus plot the source pattern (Fig. 11) using the code (Code Snippet

30).

Code Snippet 29 Estimating source time courses (stcs) using the MNE method. dSPM can also
be used, which controls for the depth bias of MNE (see script on GitHub)

368

369

370

371

372

373

374

375

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27988v2 | CC BY 4.0 Open Access | rec: 21 Oct 2019, publ: 21 Oct 2019

Code Snippet 30 Plotting the MNE solution and saving some images.

Fig. 11 Minimum Norm Estimate of the sentence activity. Left: activity in the visual cortex at 100
ms. Right: activity in frontal areas at 400 ms. The values on the colour bar are in Am.

We can also plot the time courses of all sources within an anatomically defined area. Here, we will

extract time courses from V1 and the lateral orbitofrontal cortex (Code Snippet 31) and

subsequently plot them (Code Snippet 32; Fig. 12).

The

relevant script is called single_subject_analysis.m and is found in the language_MEG folder of the

GitHub repository.

Code Snippet 31 Extracting labels from the stcs and making label time courses (ltcs).

376

377

378

379

380

381

382

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27988v2 | CC BY 4.0 Open Access | rec: 21 Oct 2019, publ: 21 Oct 2019

Code Snippet 32 Plotting the label time courses using the standard matplotlib functions.

383

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27988v2 | CC BY 4.0 Open Access | rec: 21 Oct 2019, publ: 21 Oct 2019

Fig. 12 Time courses for Sentence and Scrambled based on the mean of source activity of all
sources within the two ROIs (V1 and lateral orbitofrontal cortex (LOF)), for each of the
hemispheres (LH=left hemisphere, RH=right hemisphere)

2.5.Summary of MNE analysis

We found that the visual cortex is active for both sentences and scrambled word lists, but that the

Lateral Orbitofrontal Cortex is responding more to sentences than to scrambled word lists.

2.6.Single subject analysis – Beamformer

I am now going to report a single subject analysis on the same dataset using FieldTrip and aiming to

do a beamformer analysis of an oscillatory response. First step is setting up the paths again (Code

Snippet 33). Some steps will be done in less detail compared to the single subject analysis for the

EEG data since there is some repetition involved. We will use Dynamic Imaging of Coherent

Sources (DICS) (Gross et al. 2001), since this allows for reconstruction of oscillatory signals. The

relevant script is called single_subject_analysis.m and is found in the language_MEG folder of the

GitHub repository, https://github.com/ualsbombe/language_electrified.

384

385

386

387

388

389

390

391

392

393

394

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27988v2 | CC BY 4.0 Open Access | rec: 21 Oct 2019, publ: 21 Oct 2019

Code Snippet 33 An example of how a script can be started, making sure that all variables are
cleaned, and that MATLAB path used is the default path. Note that changes have to be made to fit
the user’s directory structure. Ideally, this should be the only change that should be made between
operating systems. On macOS the “home_dir” is usually /Users/<your_name>” and on Windows it
is C:\Users\<your_name>

2.6.1. Reading in and segmenting data

We read in the raw data and segment it into epochs of interest (Code Snippet 34). Following Lam et

al. (2016), we are going to be interested in the oscillatory responses in the time window between -

150 ms to 500 ms. To analyse oscillatory responses in this time window, it is necessary to include

extra time to also capture oscillations that have slower cycles than the duration of the time window

(650 ms). For example, it would not be possible to estimate the amplitude or power of a 1 Hz

oscillation in this time window since a cycle lasts for 1,000 ms. In this example, I am using a time

window from -550 ms to 1,000 ms (Code Snippet 35).

Code Snippet 34 Defining a trial structure using the raw dataset (cfg.dataset) and indicating what
event type and what event values should be used. Note that I have allowed for the adjustment of
36 ms of the events due to the delay between trigger and actual stimulation.

395

396

397

398

399

400

401

402

403

404

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27988v2 | CC BY 4.0 Open Access | rec: 21 Oct 2019, publ: 21 Oct 2019

Code Snippet 35 Reading in data using ft_preprocessing and subsequently adjusting the data by
the number of samples that correspond to 36 ms (cfg.offset).

Note that we are not doing any preprocessing such as baseline correcting and filtering. These will

come at later stages to make sure that this data can both be used for analysing event-related and

oscillatory responses.

2.6.2. Creating boolean indices

In this analysis, I am defining the trial indices that belong to each type (sentence or scrambled) and

put them in a cell array (Code Snippet 36). These can then subsequently be used to pick out trials of

that particular type.

Code Snippet 36 This creates two boolean vectors that indicate whether or not a trial belongs to
respectively sentence or scrambled.

2.6.3. Getting the event-related responses

Even though the main goal is to analysis oscillatory responses, it is always prudent to inspect the

event-related responses to affirm that the expected responses are there. In this case, we should

expect to see a visual response since subjects are watching visually presented words. In this step we

are building a (sub-)structure cfg.preproc, which indicates which preprocessing options should be

405

406

407

408

409

410

411

412

413

414

415

416

417

418

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27988v2 | CC BY 4.0 Open Access | rec: 21 Oct 2019, publ: 21 Oct 2019

applied before averaging using ft_timelockanalysis (Code Snippet 37). We are going to demean the

data using a baseline window from -150 ms to 0 ms and lowpass filter the data at 40 Hz. We are

also only going to consider the data in the time window from -150 ms to 500 ms as in the MNE-

Python analysis above.

Code Snippet 37 Computing the ERFs

2.6.4. Plotting the ERFs for a quick inspection

We are going to plot the ERFs at 100 ms (Code Snippet 38; Fig. 13).

Code Snippet 38 Plotting topographical plots of the response pattern at 100 ms.

419

420

421

422

423

424

425

426

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27988v2 | CC BY 4.0 Open Access | rec: 21 Oct 2019, publ: 21 Oct 2019

Fig. 13 Topographical plots showing the visual responses for sentence and scrambled.

These indicate that we get a visual response after 100 ms. Next step is to look at the time-frequency

representations (TFR). First, we are going to look at a detailed representation in terms of time. This

will be mostly for plotting. The TFRs that the beamformer source reconstructions will be based on

will be more coarse. More will follow on that below.

2.6.5. Detailed time-frequency representation

The first step is to demean the data using the whole time period as the baseline. This is necessary to

make sure that all channels have the same offset, the so-called Direct Current (DC) offset (Code

Snippet 39).

Code Snippet 39 Baselining the data is necessary to make sure that each channel has the same
offset

For the next step we use a so-called Hanning taper to estimate the power at each time-frequency

pair from 2-40 Hz (cfg.foi) and from -100 ms to 500 ms (cfg.toi). (Code Snippet 40) The steps are 2

Hz and 5 ms respectively. A sliding window with a width of 500 ms (cfg.t_ftimwin) was used. Note

that this implies that the data are smoothed over both time and frequency meaning that time-

frequency pairs nearby one another are highly correlated. An integer number of cycles should fit

inside the sliding time window (500 ms). Given that

1

500 ms
=2 Hz

this means that we can estimate frequencies of multiples of 2 Hz, i.e. 2, 4, 6, 8, ... Hz.

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27988v2 | CC BY 4.0 Open Access | rec: 21 Oct 2019, publ: 21 Oct 2019

Code Snippet 40 Creating a detailed TFR. It is detailed in the sense that a power estimate is
made for each combination of frequency and time in steps of 2 Hz between 2 Hz and 40 Hz
(cfg.foi) and in steps of 5 ms between -100 ms and 500 ms respectively using a sliding time
window of 500 ms.

2.6.6. Plotting the time-frequency representation

Here, we plot a left temporal channel (cfg.channel) with or without baselining the images (Code

Snippet 41 & Fig. 14).

445

446

447

448

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27988v2 | CC BY 4.0 Open Access | rec: 21 Oct 2019, publ: 21 Oct 2019

Code Snippet 41 Plotting the TFR using a relative baseline on the image. For producing Fig. 14A,
just comment out cfg.baseline, cfg.baselinetype and cfg.zlim (cfg.colorbartext can also be
changed).

449

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27988v2 | CC BY 4.0 Open Access | rec: 21 Oct 2019, publ: 21 Oct 2019

Fig. 14 TFR plots. A: Raw power for the different time-frequency pairs. B: Power relative to
baseline (-100 ms to 0 ms). Note that raw power is always greater in the lower frequency bands as
seen in A, so baselining can be done to make the changes in the different frequencies more
comparable to the eye.

On this channel (Fig. 14B), we see a relative increase in the theta band (~3-7 Hz) and gamma band

(>35 Hz) for the sentences that appears bigger than the corresponding ones in the scrambled

condition. Use ft_multiplotTFR to get an overview of all channels at once. Having noticed this, we

carry on to the MR preprocessing, which is needed before source reconstruction using a

beamformer can be done.

450

451

452

453

454

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27988v2 | CC BY 4.0 Open Access | rec: 21 Oct 2019, publ: 21 Oct 2019

2.7.MR preprocessing

In contrast to the EEG analysis before, we now have access to anatomical data, which has also been

registered to the CTF coordinate system using ft_volumerealign. We reslice the data and segment

the image into the brain, the skull and the scalp using ft_volumesegment (Code Snippet 42).

Code Snippet 42 Reading in the co-registered anatomical data. Reslicing it using ft_volumereslice
is just to make sure that plots using ft_sourceplot look nice. Finally, the image is segmented into
brain, skull and scalp.

2.7.1. Constructing a head model

Next step is to create a head model, which indicates how the currents that ultimately give rise to the

measured magnetic field flow through the head (Code Snippet 43). We only use the brain mesh for

the head model (see Section 2.4.3. during the MNE-Python analysis above)

Code Snippet 43 First, we create a mesh of the brain and scalp segmentations. For the head
model, only the brain compartment is used. (The scalp mesh will be used in the next step).

455

456

457

458

459

460

461

462

463

464

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27988v2 | CC BY 4.0 Open Access | rec: 21 Oct 2019, publ: 21 Oct 2019

2.7.2. Inspect the match between MR and MEG sensors

One should always make a quality check about whether the co-registration process has been done

properly (Code Snippet 44; Fig. 15).

Code Snippet 44 Plotting the head shape, the scalp surface, the sensors and the axes all together

Fig 15 Alignment of scalp, sensors, head shape points (red dots) and axes.

2.7.3. Creating a source space and a lead field

Creating a source space for a beamformer analysis can be done very differently from when one does

an MNE type of analysis (Code Snippet 45; Output 5). In MNE analyses, the sources need to be

constrained to the cortical surface. For the beamformer analysis, this is not needed. Our strategy is

instead to create a grid full of regularly spaced sources, which we can also plot (Code Snippet 46;

Fig. 16). The reason for this difference is that beamformer source reconstructions are an example of

a scanning technique where activity is estimated for each source in isolation from all other sources.

An MNE solution is on the other hand a distributed solution where the source reconstruction is done

for all sources at the same time, meaning that an infinite number of solutions would be possible if

465

466

467

468

469

470

471

472

473

474

475

476

477

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27988v2 | CC BY 4.0 Open Access | rec: 21 Oct 2019, publ: 21 Oct 2019

the sources were not constrained. In FieldTrip the source model and the lead field can be built at the

same time by using ft_prepare_leadfield.

Code Snippet 45 Creating a source model containing the leadfield. A regular grid is created with a
source for every 10 mm (cfg.resolution and cfg.sourcemodel.unit).

Output 5 sourcemodel output: dim indicates that the grid contains 16x13x12 sources (2496) (xyz-
directions); pos contains the xyz-coordinates for these 2496 sources; unit indicates the unit of pos;
inside is a boolean vector indicates whether or not the source is inside the brain; cfg has
information about the call made for the sourcemodel structure; leadfield is a cell array containing
information about how each of the 2496 sources connect to the MEG sensors – it is empty
however for sources that are not inside the brain according to inside; label contains the name of
each (273) of the MEG sensors; leadfielddimord indicates how the dimensions of leadfield are to
be interpreted: {pos}_chan_ori thus means that each cell in the cell array leadfield contains a
matrix with 273 (each label) x 3 (each orientation (xyz)) dimensions.

Code Snippet 46 Plotting and saving the source model indicating with colours, which source are
inside (blue) and which are outside (red) the brain.

478

479

480

481

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27988v2 | CC BY 4.0 Open Access | rec: 21 Oct 2019, publ: 21 Oct 2019

Fig. 17 The blue sources are the ones inside the brain. These have a lead field associated with
them, whereas the red ones do not.

2.8.Do beamforming

As I mentioned earlier, when we created the detailed TFR, the data points from the resulting data

are going to be heavily correlated with neighbouring data points. In some sense, the smoothness of

Fig. 14B is for your eyes only. This means that what we can do with a courser TFR for the

subsequent beamforming. In reality, we do not even need the power, but rather the cross-spectral

densities to do the DICS beamforming (Gross et al. 2001).

2.8.1. Create a time-frequency representation for beamforming

We are here following Lam et al. (2016). We use a sliding window of 400 ms and a temporal

resolution of 50 ms, but focus on the theta and alpha band, namely the two lower frequencies that

they report (5 Hz and 10 Hz) (Code Snippet 47). Note also that we run a combined TFR, where we

combine all the trials. It will become apparent below why that is so. This means that we do not have

an integer number of cycles (see section 2.6.5), but we choose to follow the original paper.

482

483

484

485

486

487

488

489

490

491

492

493

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27988v2 | CC BY 4.0 Open Access | rec: 21 Oct 2019, publ: 21 Oct 2019

Code Snippet 47 Running a coarse TFR in preparation for the beamformer

2.8.2. Plot the coarse the time-frequency representation

Here we just plot using the relative baselining. The colouring indicates power relative to the

baseline (Fig. 17).

Fig. 17 The response for the two conditions from a left temporal sensor (MLT15). Compare with
Fig. 14.

494

495

496

497

498

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27988v2 | CC BY 4.0 Open Access | rec: 21 Oct 2019, publ: 21 Oct 2019

We will focus on the differences in the theta band (~3-7 Hz).

2.8.3. Beamforming the time-frequency pairs

The next step is to apply the DICS beamformer to reconstruct the sources giving rise to the

oscillatory power changes in Fig. 17 (Code Snippet 48). For each of the thirteen time steps, we are

going to estimate the power of each of the sources in the source model (Fig. 16). The way this is

done is to construct a spatial filter for each source that maximally suppresses all activity related to

other sources in the source model. In short, each source is estimated in isolation from all other

sources. It is important to note that this filter is constructed based on the cross-spectral density of

the actual time-frequency pairs. This means that the constructed filters would differ between the two

conditions, sentence and scrambled. To prevent any biases arising from any such differences, we

pre-construct the filter based on the tfr_combined, making sure that the beamformers for the two

conditions use the same filters.

Code Snippet 48 Two loops looping through each time step and each event. This results in a cell
array with two cells (each event, sentence and scrambled) that each contain thirteen cells (for each
of the thirteen time points).

499

500

501

502

503

504

505

506

507

508

509

510

511

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27988v2 | CC BY 4.0 Open Access | rec: 21 Oct 2019, publ: 21 Oct 2019

2.8.4. Plotting the beamformer

First, let us have a look at the output of ft_sourceanalysis (Output 6).

Output 6 Beamformer output: freq and time indicate the time-frequency pair beamed. dim, inside
and pos are inherited from the source model. avg contains the interesting parameters. pow has the
estimated power at each of the 2496 sources of the source model, noise is the estimated noise
projected out (Code Snippet 48), filter is the estimated spatial filter for each of the sources, label
has the names of the channels and filterdimord indicates the meaning of the dimensions of filter.

To plot the output, we could simply plot the power (pow) on the source positions (pos). We are

going to interpolate it onto our MR-images though since these are more easily interpreted (Code

Snippet 49; Fig. 18).

512

513

514

515

516

517

518

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27988v2 | CC BY 4.0 Open Access | rec: 21 Oct 2019, publ: 21 Oct 2019

Code Snippet 49 Interpolate the power estimates from the beamformer onto the MR-image and
subsequently plot it using an orthogonal view for the sentence condition at 250 ms.

Fig. 18: Beamformer source reconstruction. It can be seen that the reconstructed power is greatest
in the centre of the brain.

As can be attested from Fig. 18, the greatest power is found in the centre of the brain. Although, this

may seem surprising, this is perfectly expected when you consider the fact that sources in the centre

of the brain must be very strong to be detectable at all, since they are more or less perfectly radial

(Hari and Puce 2017), meaning that their lead fields are very weak. Because of the so-called unit-

gain constraint of the beamformer algorithm, the spatial filter will pass most of the activity to the

centre of the brain (and thus also the noise) This means though that it is hard to interpret the

meaning of the power of sources throughout the brain for a given beamformer reconstruction. What

is more interpretable though is the contrast between two conditions, in our case sentence and

scrambled, since the noise will be equally represented in both. Note that you can use cfg.normalize

in ft_prepare_leadfield if you want to obtain more meaningful non-contrasted images (Code Snippet

45).

2.8.5. Plotting the contrast between two conditions – beamformer

We will now plot the power ratios for each source between sentence and scrambled (Code Snippet

50; Fig. 19).

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27988v2 | CC BY 4.0 Open Access | rec: 21 Oct 2019, publ: 21 Oct 2019

Code Snippet 50 making a contrast between the two conditions and plotting it.

Fig. 19 About 30% more power in the left temporal areas in sentence compared to scrambled.

534

535

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27988v2 | CC BY 4.0 Open Access | rec: 21 Oct 2019, publ: 21 Oct 2019

This difference between sentence and scrambled is quite similar to the one found by Lam et al.

(2016) in the left temporal areas.

2.8.6. Regularisation

Using beamformer, it may be necessary to regularise the data. This is always the case when your

data is not full-rank, such as in EEG when you re-reference the data to a common average or as in

MEG if you work with so-called MaxFiltered data as many users of Elekta systems do. This will

also be the case if you use Independent Component Analysis (ICA) and do not restore all the

components. In our case we did not have to, since our data was full rank. You can add

cfg.dics.lambda in Code Snippet 48 to see the effects of regularisation. Higher lambdas mean more

regularisation. Here is Fig. 19 reproduced using a lambda of 10% (Fig. 20), notice how the solution

is more smooth. Do try to play around with different lambdas and see its effects.

Fig. 20 About 60% more power in the left temporal areas in sentence compared to scrambled.

2.9.Summary of beamformer analysis

We saw that we can reconstruct oscillatory activity using a beamformer and that we can do contrasts

between conditions to see differential effects of these conditions upon the oscillatory activity.

3. Group analysis
Group analysis is essentially single subject analyses applied over and over. A very important feature

of robust group analyses is that prerequisite steps can easily be reconstructed if changes need to be

made along the way, e.g. in the case of mistakes or a change of strategy. I have earlier published two

tested pipelines (Andersen 2018a, b) that saves output along the way for you such that all steps can

be reconstructed. I invite the reader to have a look at these Open Access publications that come with

a full set of code and data. The issue that they are part of – From raw MEG/EEG to publication:

how to perform MEG/EEG group analysis with free academic software – can be found at

https://www.frontiersin.org/research-topics/5158/from-raw-megeeg-to-publication-how-to-perform-

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27988v2 | CC BY 4.0 Open Access | rec: 21 Oct 2019, publ: 21 Oct 2019

megeeg-group-analysis-with-free-academic-software#overview where helpful material besides my

two papers for group analysis can be found.

There are a few things that differ between single subject and group analyses though. In the MEG

analyses above, we used the brain of the individual subject to do the source reconstruction. This is

the recommended way to do if you have access to individual MR images. The challenge, then, is

how to represent an average in the source space across individuals, because individuals’ brains

differ from one another. Two strategies can be employed. One is to morph each individual’s brain

onto a common template and then do the averages across the morphed brains. This strategy is

followed in Andersen (2018a). Another is to warp the sources of the source model of each

individual, such that his or her sources are aligned to a source model based on a template brain. This

means that an average can be made across these warped source models, since each source in each

warped brain would be aligned with a corresponding source in the template brain. This strategy is

followed in Andersen (2018b). Examples of both will be shown below.

3.1.Morphing and warping

Morphing will be highlighted using MNE-Python code and warping will be highlighted using

FieldTrip.

3.1.1. Morphing in MNE-Python

Use the function mne.compute_source_morph to do the morphing to the common template

fsaverage, which is distributed with FreeSurfer (Code Snippet 51). Make sure that fsaverage is in

your subjects_dir.

Code Snippet 51 Morphing to the template brain fsaverage distributed with FreeSurfer. Make sure
that fsaverage is in your subjects_dir.

Now stcs_morphs can be plotted using Code Snippet 30, changing subject to ‘fsaverage’. This

brings subjects into a common space in which they can be averaged such that grand averages can be

obtained for the source space.

3.1.2. Warping in FieldTrip

Using cfg.sourcemodel.warpmni with ft_prepare_leadfield warps the individual’s MRI to the an

MNI template meaning that the sources of individuals will be aligned across source spaces even

though all calculations are done in the individual’s source space (Code Snippet 52; Fig. 21). This

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27988v2 | CC BY 4.0 Open Access | rec: 21 Oct 2019, publ: 21 Oct 2019

allows for grand averages across source spaces if the pos field of each individual’s source

reconstruction is switched for the pos field of the template MNI before averaging.

Code Snippet 51 Creating the MNI warped sourcemodel and plotting it.

588

589

590

591

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27988v2 | CC BY 4.0 Open Access | rec: 21 Oct 2019, publ: 21 Oct 2019

Fig. 21 An MNI warped source model that can be used to facilitate grand averages across a group
of subjects.

3.2.Final words

The greatest challenge when doing group analysis is not technical, since only a few steps differ

between single subject and group analyses. The greatest challenge is practical – keeping track of

your analysis and keeping it structured. van Vliet has seven guiding principles that he proposes that

I encourage an aspiring EEG or MEG analyser to consult. My group analysis (Andersen 2018a, b)

articles to a high degree overlap with guiding principles.

Best of luck with your analysis endeavours!

592

593

594

595

596

597

598

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27988v2 | CC BY 4.0 Open Access | rec: 21 Oct 2019, publ: 21 Oct 2019

4. References
Andersen LM (2018a) Group Analysis in MNE-Python of Evoked Responses from a Tactile

Stimulation Paradigm: A Pipeline for Reproducibility at Every Step of Processing, Going

from Individual Sensor Space Representations to an across-Group Source Space

Representation. Front Neurosci 12:. doi: 10.3389/fnins.2018.00006

Andersen LM (2018b) Group Analysis in FieldTrip of Time-Frequency Responses: A Pipeline for

Reproducibility at Every Step of Processing, Going From Individual Sensor Space

Representations to an Across-Group Source Space Representation. Front Neurosci 12:. doi:

10.3389/fnins.2018.00261

Clausner T, Dalal SS, Crespo-García M (2017) Photogrammetry-Based Head Digitization for Rapid

and Accurate Localization of EEG Electrodes and MEG Fiducial Markers Using a Single

Digital SLR Camera. Front Neurosci 11:. doi: 10.3389/fnins.2017.00264

Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG

dynamics including independent component analysis. J Neurosci Methods 134:9–21. doi:

10.1016/j.jneumeth.2003.10.009

Friston K, Ashburner J, Kiebel S, et al (2007) Statistical Parametric Mapping: The Analysis of

Functional Brain Images, 1st Edition | William Penny, Karl Friston, John Ashburner, Stefan

Kiebel, Thomas Nichols | ISBN 9780123725608

Gramfort A, Luessi M, Larson E, et al (2013) MEG and EEG data analysis with MNE-Python.

Brain Imaging Methods 7:267. doi: 10.3389/fnins.2013.00267

Gross J, Kujala J, Hämäläinen M, et al (2001) Dynamic imaging of coherent sources: Studying

neural interactions in the human brain. Proc Natl Acad Sci 98:694–699. doi:

10.1073/pnas.98.2.694

Hämäläinen MS, Hari R, Ilmoniemi RJ, et al (1993) Magnetoencephalography—theory,

instrumentation, and applications to noninvasive studies of the working human brain. Rev

Mod Phys 65:413–497. doi: 10.1103/RevModPhys.65.413

Hari R, Puce A (2017) MEG-EEG Primer. Oxford University Press, New York, NY, US

Lam NHL, Schoffelen J-M, Uddén J, et al (2016) Neural activity during sentence processing as

reflected in theta, alpha, beta, and gamma oscillations. NeuroImage 142:43–54. doi:

10.1016/j.neuroimage.2016.03.007

Oostenveld R, Fries P, Maris E, Schoffelen J-M (2011) FieldTrip: Open source software for

advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput Intell

Neurosci 2011:156869. doi: 10.1155/2011/156869

Schoffelen J-M, Oostenveld R, Lam NHL, et al (2019) A 204-subject multimodal neuroimaging

dataset to study language processing. Sci Data 6:17. doi: 10.1038/s41597-019-0020-y

Simanova I, Gerven M van, Oostenveld R, Hagoort P (2010) Identifying Object Categories from

Event-Related EEG: Toward Decoding of Conceptual Representations. PLOS ONE

5:e14465. doi: 10.1371/journal.pone.0014465

599

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27988v2 | CC BY 4.0 Open Access | rec: 21 Oct 2019, publ: 21 Oct 2019

Tadel F, Baillet S, Mosher JC, et al (2011) Brainstorm: A User-friendly Application for MEG/EEG

Analysis. Intell Neurosci 2011:8:1–8:13. doi: 10.1155/2011/879716

600

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27988v2 | CC BY 4.0 Open Access | rec: 21 Oct 2019, publ: 21 Oct 2019

	1. Introduction
	1.1. Single subject analysis and group analysis
	1.2. Sensor space and source space
	1.3. Unique issues to MEG and EEG respectively

	2. Data analysis
	2.1. EEG single subject analysis
	2.1.1. Short description of dataset
	2.1.2. EEG recording
	2.1.3. Scripting
	2.1.4. Reading in and segmenting data
	2.1.5. Extracting EOG channels
	2.1.6. Rejecting based on objective threshold
	2.1.7. Create the Event-Related Potentials
	2.1.8. Plotting the ERPs
	2.1.9. Difference waves
	2.1.10. Source reconstruction
	2.1.11. Lead field
	2.1.12. Compute the minimum norm estimate
	2.1.13. Alternative localization using dipole fits – lead field and source model
	2.1.14. Alternative localization using dipole fits – dipole fit
	2.1.15. Alternative localization using dipole fits – plot dipole fit
	2.1.16. Alternative localization using dipole fits – extract time courses
	2.1.17. Alternative localization using dipole fits – plotting extracted time courses

	2.2. Summary of analysis
	2.3. Single subject MEG analysis – MNE-Python
	2.3.1. Short description of dataset
	2.3.2. MEG recording
	2.3.3. Set paths and import
	2.3.4. Find events in the raw data
	2.3.5. Epoch the data
	2.3.6. Creating evoked responses
	2.3.7. Plotting evoked responses

	2.4. MRI preprocessing
	2.4.1. Importing the MRI
	2.4.2. Segmenting the brain
	2.4.3. Creating the Boundary Element Method (BEM) model
	2.4.4. The forward solution
	2.4.5. Inverse solution
	2.4.6. Estimate source time courses

	2.5. Summary of MNE analysis
	2.6. Single subject analysis – Beamformer
	2.6.1. Reading in and segmenting data
	2.6.2. Creating boolean indices
	2.6.3. Getting the event-related responses
	2.6.4. Plotting the ERFs for a quick inspection
	2.6.5. Detailed time-frequency representation
	2.6.6. Plotting the time-frequency representation

	2.7. MR preprocessing
	2.7.1. Constructing a head model
	2.7.2. Inspect the match between MR and MEG sensors
	2.7.3. Creating a source space and a lead field

	2.8. Do beamforming
	2.8.1. Create a time-frequency representation for beamforming
	2.8.2. Plot the coarse the time-frequency representation
	2.8.3. Beamforming the time-frequency pairs
	2.8.4. Plotting the beamformer
	2.8.5. Plotting the contrast between two conditions – beamformer
	2.8.6. Regularisation

	2.9. Summary of beamformer analysis

	3. Group analysis
	3.1. Morphing and warping
	3.1.1. Morphing in MNE-Python
	3.1.2. Warping in FieldTrip

	3.2. Final words

	4. References

