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Preface
Why investigate the neural correlates of perceptual consciousness? Why just in the visual domain 

when the underlying question is: what is consciousness?

Let's take the story back about 10 years. I was about to begin my studies of philosophy here at 

Aarhus University where I now also submit my thesis for defence. It might seem as a weird choice 

to study philosophy given that I had received a diploma from my gymnasium for being the best 

mathematical student of the year, but the questions that attracted me were of a grander scale; the 

aforementioned: what is consciousness? or with more philosophical vocabulary: how do we solve 

the mind/body problem?, but also the linked questions: what is knowledge and how do we acquire 

it? Getting introduced to distinguished thinkers of the likes of René Descartes, David Hume and 

Immanuel Kant, their insights on these questions did nothing more than strengthen my aspirations 

towards understanding consciousness and the nature of knowledge. The first bigger project I was 

involved in during my studies of philosophy was about how the mind/body problem could be 

resolved, giving an explanation of how something mental and subjective, our minds, can exist in an 

otherwise material world.

To cut this story a little shorter, I will cut to the chase. Sure, we were introduced to interesting 

modern findings and anecdotes about the study and the complexities of the mind, such as chicken 

sexers, blindsight patients and invisible gorillas, but I grew tired of waiting around for the next cool 

experiment to show up. I wanted to do it myself. Therefore, I went to the Netherlands to get a 

Master of Science in Brain and Cognitive Sciences where I realized that the only feasible 

experimental way to study the grand, underlying question is by meticulous study of all the cogs and 

wheels of the brain. One such important cog is the study of perceptual consciousness understood as 

what processes of the brain allow us to enjoy subjective experiences of the sensory information that 

constantly impinge on our bodies. I am very happy about having this opportunity to submit my 

investigation of this important cog, namely the investigation into the realization of visual subjective 

experience, to a committee of specialists.

I try to answer a few but important questions that can be asked about perceptual consciousness, 

such as how perceptual consciousness should be measured and how brain states may be classified 

according to their level of perceptual consciousness, and whether there do exist unique neural 

spatio-temporal correlates of perceptual consciousness, or whether the cognitive context partly 

determines what neural spatio-temporal correlates we find.
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Introduction – setting the stage

“But what then am I? A thing that thinks. What is that? A thing that doubts, understands,
affirms, denies, is willing, is unwilling, and also imagines and has sensory perceptions.”
(Descartes, 1985, p. 19)

In this quotation, Descartes concludes that he is a thinking thing, res cogitans, that, crucially for this

dissertation, among other things has sensory perceptions that ultimately owe their existence to 

material things, res extensa. It is clear, however, that res cogitans is not only a passive recipient of 

sensory input, but that it also is an active thing that doubts, understands, denies, is willing, is 

unwilling and imagines; processes that with more modern language can be called cognitive 

processes. Descartes (in)famously argued that res cogitans and res extensa are metaphysically two 

separate things, thus in effect separating mind and body wholly from one another. He was, however,

never able to argue convincingly how they were able to interact, which everyone experiences that 

they do on a daily basis. How mind and body interact vexed many following great philosophers. 

Leibniz, Hume, Berkeley, Kant and many others all tried to theoretically bridge res cogitans, mind, 

and res extensa, body, and explain how they interact, but none gave a satisfying account.

It was not until the late 19th century and early 20th century that experimental psychology started 

flourishing, but the predominant experimental attitude was that of behaviourism wherein the mind 

was seen as a black box. What mattered were the dependencies between stimuli and responses. 

What happened in between could not be observed, and there was thus no need for a link between 

mind and body. Putative mental explanations of why an organism responded as it did were argued to

be redundant, notably reflected in this quote by Skinner:

“A single set of facts is described by the two statements: “He eats” and “He is hungry.” 
A single set of facts is described by the two statements: “He smokes a great deal” and 
“He has the smoking habit.” A single set of facts is described by the two statements: 
“He plays well” and “He has musical ability.”” (Skinner, 1965, p. 31)

This reduces the study of the mind to observable behaviour, which for all practical purposes reduces

mind to body. Skinner was right to emphasize that many mental explanations were redundant, but 

what he could not foresee was how the advance of technology would make it possible to investigate
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in great detail what the black box consists of. This technology opens for the possibility to 

investigate perception, understood as occurring in between the sensation of a stimulus and the 

response made on that stimulus. Crucially, these advances allow one to investigate the processes 

behind perception and not just restate observable behaviour in mental terms, as Skinner rightfully 

objected to. The state-of-the-art technologies, among others, include magnetic resonance imaging 

(MRI: Lauterbur, 1973), with which changes in blood flow can be used to localize which brain 

regions are active and electro- and magnetoencephalography (EEG: Berger, 1929; MEG: 

Hämäläinen, Hari, Ilmoniemi, Knuutila, & Lounasmaa, 1993), with which electrical potentials and 

magnetic fields produced by neurons in the cortex can be measured on the scalp. The advent of 

these brain imaging and brain recording technologies not only made it possible to investigate the 

processes of the brain that mediate stimulus-response dependencies, but also potentially the 

processes that are associated with the presence and absence of conscious perception. This may 

provide a first step into understanding how mind and body can be bridged since consciousness is 

regarded as an archetypical mental phenomenon (Chalmers, 1997; Nagel, 1974).

A necessary first step is to define what I mean by consciousness and specifically what I mean by 

perceptual consciousness. Consciousness can be characterized as an umbrella term, a term that 

incorporates several meanings. An important distinction is between state consciousness and 

consciousness of content. Different bodily states are associated with differing levels of 

consciousness. Everyday examples are the differences between being asleep and awake or between 

being sober and intoxicated. More clinical examples of altered states of consciousness are those of 

being comatose or vegetative. These different states alter the repertoire of responses that an 

organism have available, and what cognitive operations it can undertake (Laureys, Owen, & Schiff, 

2004). In the present dissertation, however, my emphasis will be on consciousness of content, and 

specifically content derived from the senses. I forthwith use “perceptual consciousness” to mean 

consciousness of content. When a stimulus impinges on the sensory modalities of an organism, the 

perceived content may differ even when the conscious state, as discussed above, is constant. It may 

differ between organisms; for example young humans can hear a wider spectrum of pitches than old

humans can. Crucially, perceived content of otherwise identical stimuli may also differ between 

trials within a participant. In the simplest example, on some trials a participant may claim that he 

did not consciously perceive presented stimuli whereas on otherwise identical trials he may claim 

that he did consciously perceive the stimuli. If the physical circumstances are identical, and only the

perceived content differs, then by contrasting brain activity from trials with conscious perception 

with brain activity from trials with no conscious perception it should in theory be possible to find 
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the neural correlates of perceptual consciousness, or in other terms make the brain processes of 

perceptual consciousness available for investigation. It is important to recognize that seen from a 

Cartesian viewpoint, it is only a small sub-component of the mind, res cogitans, that one studies 

when one studies perceptual consciousness, namely that of sensory perception. The investigation of 

this sub-component, perceptual consciousness, may follow one of two courses, one where it is seen 

as non-integrated with other cognitive processes of the mind, and one where it is seen as integrated 

with other cognitive processes of the mind, what I will call the cognitive context. Both these 

proposals are very distinct from Descartes' suggested neural correlate of consciousness, the pineal 

gland. Activity in the pineal gland, from the Cartesian viewpoint, is seen as the general neural 

correlate of consciousness understood as correlating with any of the above processes, such as 

affirming, denying, imagining et cetera. Even when restricting ourselves to investigating perceptual

consciousness understood as what is related to what Descartes called sensory perception, we in 

theory have, at least, 3 levels of neural correlates of perceptual consciousness that we could design 

experiments for unravelling. Firstly, a general neural correlate of perceptual consciousness that 

would encompass all sensory modalities, secondly, specific neural correlates of consciousness for 

each sensory modality and thirdly, cognitive context dependent neural correlates for each sensory 

modality (Figure 1).

Deciding between levels of description
A priori there is no way one can determine which level matches reality the best, and because of the 

apparent hierarchical relationship between the levels, interpretations as to what different 

experimental results indicate will differ greatly. Compared to a given level, then from any level 

higher in the hierarchy, differences between sub-divisions at the given level of the hierarchy will be 

seen as sources of noise rather than sources of signal. For example, from the level that there exists a

unique general neural correlate across sensory modalities, any specific differences between 

modalities will be seen as noise, and the emphasis will be on unravelling what is common across 

modality specific differences. Similarly, from the level that there exists a unique specific, say, visual

neural correlate of consciousness, any cognitive context dependent differences will be seen as noise,

and the emphasis will be on unravelling what is common about visual correlates across differences 

in cognitive context. Logically speaking, there is no final experiment that can decide at which level 

one should expect to find neural correlates of perceptual consciousness. Despite the differences one 

might find between specific sensory modalities, a proponent of a general neural correlate may 

always, with no logical fault, insist that one simply has not searched thoroughly enough for what is 

common across the sensory modalities. The same goes for a proponent of there existing specific 
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neural correlates of consciousness for a given modality, who similarly, with no logical fault, can 

insist that any cognitive context dependent differences obscuring the common correlate for that 

modality is just a consequence of not having searched thoroughly enough. Conversely, seen from a 

lower level in the hierarchy, there is no logical reason that the higher levels should encompass 

anything common about the levels just below them. It is important to recognize that whatever level 

one believes that perceptual consciousness should be studied from carries a set of assumptions that 

determines how one will interpret the outcomes of experiments. To sum up, a modality dependent 

viewpoint, what I in this dissertation call a non-integrated viewpoint (Figure 1: middle level), thus 

has the theoretical consequence that there must exist unique neural correlates of perceptual 

consciousness, independent of changes in cognitive context, whereas a context dependent 

viewpoint, what I in this dissertation call an integrated view, has the theoretical consequence that 

neural correlates of perceptual consciousness may differ between different cognitive contexts 

(Figure 1: lower level).

Figure 1: Different levels of neural correlates of perceptual consciousness: theoretically, there can
be at least 3 levels of neural correlates of perceptual consciousness (NCC). A modality

independent NCC, which is independent of sensory modality. A modality dependent NCC, which
varies dependent on which sensory modality is investigated. Finally, NCC's can be dependent on
cognitive context, thus for any sensory modality, one would expect that NCC's may differ across

differences in context.

Before this distinction can be discussed in greater detail and in terms of experiments, an 

understanding of how perceptual consciousness can be behaviourally operationalized is necessary.
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First, however, an outline of the remaining part of the dissertation will be presented.

Outline of the dissertation
In this dissertation, I will review and discuss how perceptual consciousness best can be measured. 

This will be followed by a discussion of what EEG and MEG studies have revealed about brain 

activity correlating with changes in perceptual consciousness. An introduction into how one may 

expect differing results dependent on whether one sees perceptual consciousness as integrated with 

cognitive context or not follows. I will then present and summarize the 3 experimental studies that 

this dissertation is based on. A methodological paper that I co-authored is also included in the 

summary, which forms parts of the basis of 2 of the experiments. In the discussion, I will argue that 

these studies indicate how an integrative view of perceptual consciousness and cognitive context is 

preferable to a non-integrative view. These results make it possible to hone in on how the brain 

connects the seemingly two disparate kinds of things that Descartes envisioned were connected by 

the pineal gland.

Background

Perceptual consciousness

Behavioural methods for separating conscious and non-conscious 
trials

A necessary step for elucidating the brain processes behind perceptual consciousness is designing 

behavioural experiments that can optimally separate conscious trials from non-conscious trials. 2 

main strands, an objective and a subjective, are present in the literature. In the objective strand, trials

are separated into conscious and non-conscious trials by performance. For example, if the 

proportion of correct responses for a simple detection task is not significantly different from 

chance-level performance, or alternatively that sensitivity (d') (Macmillan & Creelman, 2005) is not

significantly different from zero, this is taken as absence of perceptual consciousness whereas 

above chance-level performance or above-zero sensitivity is taken as presence of perceptual 

consciousness (Hannula, Simons, & Cohen, 2005). Using signal detection analyses, it is also 

possible to separate sensitivity (d') from criterion (c), the bias a participant has towards a response, 

which is something that can be problematic for subjective approaches, as discussed below. A 

potential problem with objective approaches is that it seemingly assumes a dichotomous view of 

perceptual consciousness, either performance is different from chance or it is not. Furthermore, 

because it is only possible to measure performance as different from chance when trials are 

summarized over conditions, it is impossible to have physically identical conscious and non-
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conscious trials. This is a real problem because it results in physically induced differences in the 

electrophysiological components that may correlate with perceptual consciousness as shown by 

Fisch et al. (2009).

On the other hand, using subjective ratings of perceptual consciousness, it is possible to group 

single trials as participants indicate. This has the further consequence that one is not restricted to a 

dichotomous view of consciousness, but can ask participants to rate perceptual consciousness using 

however many rating points the experimenter please. For example, subjective scales with 21 points 

(Sergent & Dehaene, 2004), 7 points (Nieuwenhuis & de Kleijn, 2011), 4 points (Ramsøy & 

Overgaard, 2004) and 2 points (Lau & Passingham, 2006) have all been used. It is not only heavily 

debated how many points should be used, but also how participants should categorize their 

experiences according to the points available. There are at least three ways often used: either the 

participant is asked for how clearly he saw the stimulus (Ramsøy & Overgaard, 2004), how 

confident he is that he answered correctly (Rademaker, Tredway, & Tong, 2012) or how much he 

would bet on being correct (Persaud, McLeod, & Cowey, 2007). A potential problem with 

subjective scales is that there is no principled way of estimating the criterion of a participant 

(Hannula et al., 2005). One participant might use a liberal criterion; whenever he sees the slightest 

signal, he rates it as conscious. Another participant might use a conservative criterion; he only rates 

it as conscious whenever he sees a very clear signal. This problem is only multiplied when there are

more than 2 points on a rating scale. For example, using a 7-point scale, said colloquially, one man's

rating of 3 might be another man's rating of 5.

In the studies of this dissertation, we have used the Perceptual Awareness Scale (Ramsøy & 

Overgaard, 2004) to let participants quantify their experiences. In the section below, I will argue 

why this scale might be especially fit for revealing relevant brain processes underlying differences 

in perceptual consciousness.

Perceptual Awareness Scale

An intuition that permeates this whole dissertation is that subjective reports of perceptual 

consciousness must be taken seriously. If doubts linger as to whether participants are using scales in

differing manners, then experimenters should not blame the participants. They should rather blame 

themselves; experimenters need to make sure that participants are comfortable using the scales that 

they demand they use. To meet these demands, Ramsøy and Overgaard (2004) had participants 

perform a number of tasks on briefly presented stimuli. They had to indicate either the colour, shape

or position of the stimulus. Subsequently participants were to describe, in their own words, their 

perceptual consciousness of the stimulus, and then throughout the experiment come up with 
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categories that reflected the range of experiences they had. They were suggested that the end points 

could be no experience and clear experience respectively. Participants agreed on a 4-point scale 

with the following rating descriptions: 1: No Experience, 2: Weak Glimpse, 3: Almost Clear 

Experience, 4: Clear Experience (Table 1).

This scale is called the Perceptual Awareness Scale (PAS). What sets PAS apart from many other 

scales is that the rating points are categorical (Table 1), meaning that the rating points differ 

qualitatively from one another. Most other scales are purely ordinal such as the 21-point scale that 

Dehaene endorses (Dehaene, 2014; Sergent & Dehaene, 2004), meaning that the relations between 

rating points are only qualitative in terms of “more” and “less”. Only the end points are clearly 

defined, e.g. zero visibility and full visibility. This leaves a lot open for interpretation for the 

individual participant regarding where to set the criterion as discussed above (Hannula et al., 2005). 

PAS leaves less open for interpretation due to its categorical nature. The difference between No 

Experience and Weak Glimpse can be defined as whether there was an experience of anything at all. 

The difference between Weak Glimpse and Almost Clear Experience can be defined as whether 

there was an experience of content. The difference between Almost Clear Experience and Clear 

Experience can be defined as whether there was an unambiguous experience of content (Andersen, 

Pedersen, Sandberg, & Overgaard, 2015).

Table 1: The Perceptual Awareness Scale (PAS)

Label Description (from Ramsøy and Overgaard 2004)

(1) No Experience (NE)
No impression of the stimulus. All answers are seen 
as mere guesses

(2) Weak Glimpse (WG)
A feeling that something has been shown. Not 
characterized by any content, and this cannot be 
specified any further

(3) Almost Clear Experience (ACE)

Ambiguous experience of the stimulus. Some 
stimulus aspects are experienced more vividly than 
others. A feeling of almost being certain about one's 
answer

(4) Clear Experience (CE)
Non-ambiguous experience of the stimulus. No 
doubt in one's answer

Scale steps and their descriptions

These categorical differences between ratings served as a guideline for instructing participants in 
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the studies in this dissertation. The arguments above for the fitness of PAS to measure perceptual 

consciousness are all theoretical, and they need to be empirically grounded. Dienes (2007) has 

suggested two criteria by which perceptual consciousness scales can be judged. Firstly, the stronger 

the correlation is between ratings of perceptual consciousness and performance, the more sensitive 

the scale is in allowing the participant to rate his perceptual consciousness correctly. Secondly, 

assuming no unconscious processing, a scale that reveals performance not different from chance 

when participants claim no experience will be exhaustive. Testing sensitivity and exhaustiveness 

Sandberg et al. (2010) compared PAS with confidence ratings and post-decision wagering. They 

found that PAS showed a significantly stronger correlation between accuracy and perceptual 

consciousness than both the other types of ratings did, indicating that PAS is the most sensitive scale

of the three. They also found that PAS attributed the least amount of unconscious processing to 

participants. Given two assumptions, this entails that PAS is the better of the 3 scales in exhausting 

the kinds of experiences participants may have. These two assumptions are: firstly, that the amount 

of unconscious processing should be independent of the scale used to rate one's experiences; and 

secondly, that above-chance performance when claiming no experience can partly be a consequence

of the scale not being fully exhaustive.

It thus seems that PAS allows for more sensitive and exhaustive reporting of perceptual 

consciousness than confidence rating and post-decision wagering do. Committing to PAS, however, 

furthermore assumes to some degree that one believes that perceptual consciousness is graded. 

Whether this is so is a hotly debated issue. Classically, perceptual consciousness was 

operationalized as dichotomous, an all-or-none phenomenon. This was probably a consequence of 

using objective methods, where performance or sensitivity was either different from chance-level or

not, as discussed above. In the very influential global neural workspace theory of Dehaene (2014), 

perceptual consciousness is argued to be realized in an all-or-none manner. I will now therefore 

discuss the evidence for and against a dichotomous view of perceptual consciousness.

Dividing perceptual consciousness

As argued earlier, a dichotomous view of perceptual consciousness follows naturally from 

operationalizing perceptual consciousness based on objective performance criteria. Using subjective

criteria, perceptual consciousness has also been thought of as dichotomous (Lau & Passingham, 

2006; Weiskrantz, 1990). In global neural workspace theory (Dehaene, 2014; Dehaene, Changeux, 

Naccache, Sackur, & Sergent, 2006) perceptual consciousness is also seen as a dichotomous 

phenomenon, where stimuli are either seen or not-seen. In the experiments that Dehaene and his 

group use to provide evidence for the dichotomousness of perceptual consciousness, they mostly 

- 11 -



use a 21-point subjective visibility scale to let participants provide subjective ratings of the stimuli 

shown (Del Cul, Baillet, & Dehaene, 2007; Sergent, Baillet, & Dehaene, 2005; Sergent & Dehaene, 

2004). An advantage of using this scale is that it does not assume that perceptual consciousness is 

dichotomous, but it might still reveal dichotomous responding. The endpoints of this scale are 

labelled not seen and maximally visible with steps of 5 % in between. Sergent and Dehaene (2004) 

found results on an attentional blink task that provided evidence for perceptual consciousness being 

dichotomous. The attentional blink (Raymond, Shapiro, & Arnell, 1992) is a phenomenon that 

occurs when two target stimuli, T1 and T2, are presented rapidly among a series of distractors. As 

long as one is only required to respond to one of the targets, one almost never misses that target. 

However, when responding is required to both targets, T2 is often not consciously perceived, 

presumably due to attention being directed towards T1. Using this task they found that subjective 

visibility responses clustered around 0 % and 100 % for T2 when participants had to respond to 

both targets. A concern about using a 21-point scale is that it may not be clear for participants how 

to use all the points, and criterion setting might differ substantially between participants. 

Nieuwenhuis & de Kleijn (2011) tested whether the number of points on the rating scale made a 

difference to the nature of the distribution of visibility ratings. They used a 7-point scale, but 

otherwise repeated the experiment of Sergent and Dehaene (2004). They found a more graded 

pattern with a substantial amount of ratings around 50 % visibility. Furthermore, in a subsequent 

experiment, they introduced a task requirement on T2. T2 was one of 8 digits and participants had 

to judge which was shown. In the original task, participants just had to judge the visibility of T2, 

but false alarms were controlled for by using blank T2's on a subset of trials. The task requirements 

changed the pattern of responses dramatically with participants using all 7 points of the scale for the

visibility ratings. These 2 manipulations indicate that the cognitive context has an effect on the 

ratings of perceptual consciousness.

Furthermore, Sandberg et al. (2010) fitting psychometric curves for both performance and 

perceptual consciousness as functions of stimulus duration in a masking task found relationships 

that were significantly different from an all-or-none relationship. An ideal all-or-none relationship 

would be a step function, but their data heavily supported that perceptual consciousness is not all-

or-none. Finally, Overgaard, Rote, Mouridsen and Ramsøy (2006) compared PAS with a 

dichotomous rating scale in a localization task. Interpreting their results according to the sensitivity 

and exhaustiveness criteria discussed earlier (Dienes, 2007; Sandberg et al., 2010), they found both 

greater sensitivity, a stronger correlation between performance and reported perceptual 

consciousness, and greater exhaustiveness, lower above-chance performance for reports of no 
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experience, for PAS compared with a dichotomous scale. Thus, there is good behavioural evidence 

for PAS being a better fit than other tested scales.

Informativeness of perceptual states

Another important aspect of this dissertation is an effort of how to best quantify the informativeness

of subjective experiences. The informativeness of perceptual states can be construed as what kinds 

of actions and responses they allow for. I have already discussed that an ideal scale for rating 

perceptual consciousness should be sensitive and exhaustive (Dienes, 2007; Sandberg et al., 2010). 

For a scale to be exhaustive, it should allow participants enough scale points to rate all kinds of 

conscious experiences they may have, however faint they may be. That means that if there is no 

unconscious processing of stimuli on a task, participants should perform around chance level when 

they claim no conscious experience of the stimuli. I here propose that in the absence of unconscious

processing, there is a third property, besides sensitivity and exhaustiveness, that is attractive for a 

scale to have. The informativeness of a state of no conscious experience for a subsequent response, 

assuming no unconscious processing, should show cognitive independence of external and internal 

differences in cognitive context, such as sensory saliency, top-down expectations, task settings et 

cetera. It is well known that differences in top-down expectations towards stimuli affect response 

times (Doherty, Rao, Mesulam, & Nobre, 2005), that differences in sensory saliency affect response

times (Eriksen & Hoffman, 1972) and accuracy of responses (Sandberg et al., 2010) and that 

differences in task setting affect response times (Posner & Mitchell, 1967). I propose that if a scale 

truly is exhaustive, trials where participants report no conscious experience (NE: Table 1) should 

show cognitive independence of external and internal factors if there is no unconscious processing 

of stimuli. We investigated whether we could find evidence of cognitive independence on trials 

where participants claim to have no conscious experience in Study 3 (Andersen & Tong, in 

preparation), potentially further strengthening PAS as a scale fit for measuring perceptual 

consciousness.

With these considerations in mind, I will now focus on prior results based on contrastive analyses, 

argued to reveal neural correlates of perceptual consciousness and how studies done with PAS may 

inform the literature on neural correlates of perceptual consciousness even further. When discussing

EEG and MEG components, I will discuss some further arguments pertaining to global neural 

workspace theory that may be taken to indicate that perceptual consciousness is all-or-none.

Contrastive analyses
Baars (1988) proposed contrastive analyses as a method to elucidate the neural correlates of 
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conscious experience. In terms of perceptual consciousness, the idea is that if objective stimuli are 

identical across trials while perceived content differs, then any differences in brain activity must be 

neural correlates of perceptual consciousness. This would, in principle, work for any modality, 

visual, auditory, olfactory, gustatory or tactile. Crick and Koch (1990), however, suggested that the 

visual modality would be the most conducive to study because, compared to the other modalities, 

much was already known about the basics of the visual system and cortex (Polyak, 1957). In this 

dissertation, I follow Crick and Koch's suggestion and study perceptual consciousness based on 

visual experimentation. This focus on the visual modality means that I will not consider any 

possible commonalities across sensory modalities (Figure 1). I will thus only consider possible 

commonalities across differences in cognitive context (Figure 2).

Figure 2: The 2 levels of neural correlates of perceptual consciousness (NCC) of main interest in
this dissertation: a context independent NCC, which is invariant across differences in cognitive

context, and cognitive context dependent NCC's, which vary differ across differences in context.

Examples of early studies of the neural correlates of perceptual consciousness are the studies of 

ffytche et al. (1998) and of Dehaene et al. (2001). Both studies used functional magnetic resonance 

imaging (fMRI), but they localized the neural correlates of perceptual consciousness to different 

ends of the brain, ffytche et al. to the occipital lobe and Dehaene et al. to the frontal lobe. The 

experimental procedures were very different, however, with ffytche et al. testing patients with the 

Charles Bonnet syndrome (de Morsier, 1936) and Dehaene et al. testing healthy volunteers.

Setting aside the vices and virtues of the two studies, they are telling of an ever-present debate 

regarding the neural correlates of perceptual consciousness. Put very roughly, it is a debate of 

whether the proper neural correlates of perceptual consciousness are early, < 300 ms, and occipito-
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temporally realized or whether they are late, > 300 ms, and fronto-parietally realized [for reviews 

see Koivisto and Revonsuo (2010) and Rees, Kreiman and Koch (2002)].

Electro- and magnetoencephalographic studies of perceptual 
consciousness

In EEG and MEG studies of the neural correlates of perceptual consciousness, there are two usual 

suspects, N1-N2, < 300 ms, and P3a, > 300 ms, that seem to correlate with perceptual 

consciousness independently of whether the manipulation of perceptual consciousness was obtained

through masking (Andersen et al., 2015; Koivisto et al., 2008), the attentional blink (Koivisto & 

Revonsuo, 2008; Sergent et al., 2005), change blindness (Koivisto & Revonsuo, 2003) or low 

contrast stimuli (Pins & Ffytche, 2003). Both N1-N2 (Koivisto & Revonsuo, 2010) and P3a 

(Dehaene, 2014) have been claimed to be the proper neural correlates of consciousness. For the 

sake of completeness, it should be mentioned that P1 has also been argued to be a neural correlate 

of perceptual consciousness (Pins & Ffytche, 2003; Veser, O’Shea, Schröger, Trujillo-Barreto, & 

Roeber, 2008), but because it shows up much less consistently than N1-N2 and P3a [for a review, 

see (Koivisto & Revonsuo, 2010)], I focus on N1-N2, also called the Visual Awareness Negativity 

(VAN), and P3a in this dissertation (Figure 3A).

Source reconstructions of EEG data have localized the N1-N2 in the occipito-temporal lobes and 

the P3a to the fronto-parietal lobes (Koivisto & Revonsuo, 2010; Sergent et al., 2005). One position 

in the literature is that the early occipito-temporal activity is a proper neural correlate of perceptual 

consciousness, and that the late fronto-parietal activity is further processing of the perceived 

stimulus, such as loading it into working memory, preparing a motor response based upon it, 

internally attending to it et cetera. (Koivisto & Revonsuo, 2010; Lamme, 2006). Another position is

that it is exactly this late fronto-parietal activity that is a proper neural correlate of perceptual 

consciousness whereas the early occipito-temporal activity reflects perceptual integration of the 

features of the stimuli (Dehaene, 2014; Sergent et al., 2005). Aru, Bachmann, Singer and Melloni  

(2012) introduced terminology that is helpful in characterizing this debate. They distinguished 

between neural prerequisites and consequences of perceptual consciousness and demarcate these 

from the proper neural correlates of perceptual consciousness. An example of, what in hindsight, 

can be termed a neural prerequisite of perceptual consciousness is the finding of Busch et al. 

(2009). They presented transient light flashes at participant threshold and categorized responses as 

hits and misses according to the signal detection framework. They found that hits and misses 

revealed different phase distributions in the alpha frequency bands prior to stimulus onset. They 

interpreted these differences in phase distributions as probably driven by stochastic fluctuations in 
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neural excitability (G. H. Bishop, 1932). An example of what might be a neural consequence of 

perceptual consciousness is the preparation of a response based on the perceived stimulus (Pitts, 

Martínez, & Hillyard, 2012).

Figure 3: A) An example of an MEG response: grand average over 10 participants. Graded
differences are visible in the Visual Awareness Negativity Range (130-320 ms), and a less graded

difference is present around the P3a (~430 ms). From Study 2 below. B) The positions of
magnetometers and gradiometers around the head of an example participant. Encircled is the

magnetometer shown in A.

Using this terminology, the debate can be framed as one position (Dehaene, 2014) stating that the 

late fronto-parietal activity is the proper correlate and that the early occipito-temporal activity is a 

neural prerequisite of perceptual consciousness, specifically integration of the perceptual features. 

The other position states that the early occipito-temporal activity is the proper correlate, and that the

late fronto-parietal activity is a neural consequence of perceptual consciousness.

Integral to global neural workspace theory is that perceptual consciousness is a dichotomous 

concept and what separates conscious from unconscious processing is a non-linear transition where,

through the involvement of fronto-parietal areas, perceptual information is either made globally 

available, reaching consciousness, or fails to be made globally available, not reaching 

consciousness. Proponents of global neural workspace theory argue that P3a, the late fronto-parietal

component, is the only component that shows the same bimodal character (Del Cul et al., 2007) 

that, they claim (Sergent & Dehaene, 2004), perceptual consciousness does. I have supplied 

arguments in an earlier section for why this is probably only the case for very specific paradigms, 

e.g. the attentional blink but not masking (Sergent & Dehaene, 2004), and even so only when the 
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task related to the blinked target is not too demanding (Nieuwenhuis & de Kleijn, 2011). Instead of 

trying to resolve the debate as to which component reflects the proper neural correlate of perceptual 

consciousness by comparing the characteristics of EEG and MEG components and relating them to 

considerations about how perceptual consciousness can be sliced up, I opted for another way of 

providing evidence to the debate. Classically, in EEG experiments when one wants to make the 

argument that component A, and not component B, is the one that is related to process P, one aims 

at creating an experimental situation where component B is dissociated from process P while 

component A still shows evidence of association with process P. This approach of dissociating 

components may be infeasible, however, if neural consequences of perceptual consciousness always

or mostly follow neural correlates of perceptual consciousness (Sandberg, Andersen, & Overgaard, 

2014). Instead of following this road, (but see (Pitts et al., 2012; Pitts, Metzler, & Hillyard, 2014) 

for a successful attempt of dissociating P3a from perceptual consciousness), I chose to compare the 

predictive powers of the two components using multivariate analysis (Opinion: Sandberg et al., 

2014) on source reconstructed data from MEG recordings (Study 1: Andersen et al., 2015). I argue 

below in the summary of articles that this makes it possible to find evidence which of the 2 

proposed correlates correlates the best with perceptual consciousness. At this point, it should be 

noticed that the studies of perceptual consciousness that I have discussed so far view perceptual 

consciousness and cognitive context as non-integrated processes. This is also present in the 

distinctions Aru et al. (2012) make between proper correlates of perceptual consciousness and 

consequences of perceptual consciousness, which assume that there are proper neural correlates of 

perceptual consciousness that can be found independently of differences in cognitive context such 

as differences in task requirements. These proper correlates are theorized to correlate only with 

conscious experiences as such (Aru et al., 2012; Block, 2005) and not with context (Figure 2: upper 

level).

The potential influence of cognitive context

I will supply a very general operationalization of what one should expect to differ between non-

integrative and integrative viewpoints. A non-integrative viewpoint has as its most important 

theoretical consequence that there is a definite neural where and when that correlates with 

differences in perceptual consciousness. Oppositely, a weak formulation of an integrative viewpoint

has the theoretical consequence that there is no reason to expect a definite where and when, while a 

strong formulation has the theoretical consequence that there is no definite where and when. In the 

REFCON model (Overgaard & Mogensen, 2014), for example, what correlates the best with 

differences in perceptual consciousness is neural information relevant to the cognitive context, e.g. 
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task, at hand. A theoretical consequence of this is that perception may be restricted to the extraction 

of only the necessary features in relation to the task at hand when perceptual circumstances are less 

than optimal. This means that we should not necessarily expect that we will find the same neural 

correlates of perceptual consciousness across all tasks and paradigms, but that they will differ 

according to cognitive context. Especially for the graded ratings, one could expect to find 

differences across tasks since this is where cognitive strategies may differ the most, due to which 

strategies are available. For perfectly clear and crisp experiences, we thus expect less differences, 

due to the expected availability of all potential cognitive strategies. For absent experiences, we also 

expect less differences because there are no cognitive strategies to apply, thus there should be no 

differences between tasks. This of course assumes that we have a scale that has a rating that shows 

cognitive independence, which I discussed earlier.

Aims
The general aim of this dissertation is to inform the debate about what constitutes neural correlates 

of perceptual consciousness and how perceptual consciousness should be measured.

I argue that the debate about neural correlates of perceptual consciousness can be greatly informed 

by the application of multivariate analyses to source reconstructed magnetoencephalographic data. 

The theoretical arguments for this is given in the included Opinion, and applications of multivariate 

analyses are in Studies 1 & 2. 

In Study 1 we applied multivariate analyses to a simple perceptual task with a constant task 

requirement. We specifically tested whether occipital sources or frontal sources were most 

predictive of perceptual consciousness. Seen in isolation this study can only reveal something about

perceptual consciousness given the assumptions of a non-integrative view (Figure 2: upper level).

In Study 2 we also manipulated the task requirements to test whether cognitive context had an effect

on what neural activity was found to correlate with perceptual consciousness, thus investigating 

whether these results could be understood from an integrative view (Figure 2: lower level).

In Study 3 we further investigated how perceptual consciousness and cognitive context interact. I 

designed a behavioural study where we investigated how top-down expectations affect perceptual 

consciousness. This also allowed for assessing whether the Perceptual Awareness Scale fulfils the 

suggested criterion of cognitive independence. 

The specific aims of the 4 manuscripts included in this dissertation were:
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Opinion: Using multivariate decoding to go beyond 
contrastive analyses in consciousness research:

The aim of this opinion article was to argue for the use of multivariate decoding analyses in 

detecting the neural correlates of perceptual consciousness. We argue that because multivariate 

decoding analyses are most sensitive to patterns of neural activity that are consistently present on 

the single trial level they are especially fit for revealing the neural correlates of perceptual 

consciousness.

Study 1: Occipital MEG activity in the early time range (< 300 
ms) predicts graded changes in perceptual consciousness

The aim of this study was to investigate whether early occipital activity (< 300 ms) or late frontal 

activity (> 300 ms) was the best predictor of perceptual consciousness in a simple perceptual task. 

For this analysis, we used  multivariate statistics, as argued in the Opinion paper (Sandberg et al., 

2014), based on source reconstructions of magnetoencephalographic recordings.

Study 2: Task differences induce differences in 
magnetoencephalographic correlates of consciousness

The aim of this study was to compare 2 tasks with minimal differences in stimuli. From a non-

integrative view of perceptual consciousness and cognitive context, one would expect that there 

would be one unique spatio-temporal proper neural correlate of perceptual consciousness. From an 

integrative view (Overgaard & Mogensen, 2014) of perceptual consciousness and cognitive context,

where task requirements partly determine the neural correlates of perceptual consciousness, one 

would expect spatio-temporal differences in what spatio-temporal activity that correlated with 

perceptual consciousness dependent on task requirements. We investigated whether a non-

integrative or an integrative approach to perceptual consciousness and cognitive context would 

make most sense of the data.

Study 3: Top-down expectations affect the gradedness of 
perception and the evidence weighting of informative 
levels of perceptions:

Nieuwenhuis & de Kleijn (2011) found that differences in task difficulty and the rating scale used 

affected in how graded a manner participants rated perceptual consciousness, which can be 

interpreted as evidence of perceptual consciousness and cognitive context interacting. We 

conducted this study to investigate how top-down expectations, a manipulation of cognitive context,

towards prospective stimuli affected ratings of perceptual consciousness and expected that the 
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vaguer one's expectations were, the more graded perceptual consciousness participants would 

report. We also investigated how this change in cognitive context affected accuracy and response 

times across different levels of perceptual consciousness, and specifically whether the “No 

Experience” rating (Table 1) showed evidence of cognitive independence.

Summary of articles

Opinion article

Univariate approach for detecting neural correlates of perceptual 
consciousness

In a traditional univariate analysis, each participant's epoched data is summarized by averaging over

all the epochs for each of the relevant experimental conditions. In turn, these individual averages 

can be summarized as grand averages, which are averages of all participant averages for each of the 

relevant experimental conditions. These grand averages for the experimentally relevant conditions  

can then be compared to one another, and summary statistics can, in principle, be done for each of 

the time points. If one were to do a univariate test for each time point, however, one would face the 

“multiple comparisons problem” (Shaffer, 1995). This problem is that as the number of statistical 

tests one performs increases, so does the number of false positives, null hypotheses rejected due to 

chance and not because of a real difference between 2 conditions. Due to the dependencies between 

data points, one cannot use a classical correction such as the Bonferroni-correction because this 

assumes that the tests performed are independent of one another, which is evidently false. A 

classical way to reduce the number of tests and thus to mitigate the multiple comparisons problem is

to only compare peak amplitudes of predefined components (Luck, 2014). Comparisons of peak 

amplitudes for different levels of perceptual consciousness have been exploited to generate great 

amounts of knowledge about potential neural correlates of perceptual consciousness (Koivisto & 

Revonsuo, 2010; Rees et al., 2002; Sergent et al., 2005). As discussed earlier, especially 2 

components have been proposed as neural correlates of perceptual consciousness, the N1-N2, ~130-

320 ms, and the P3a, ~320-510 ms, (Koivisto & Revonsuo, 2010). One limitation of the univariate 

method is that there is no way to compare which components correlate the best with perceptual 

consciousness. Naïvely, one might think that one could simply compare the amplitude sizes of 

components, but such comparisons do not reveal anything about differences in the underlying 

sources (Luck, 2014). One could try and dissociate components from perceptual consciousness, but 

these attempts are made more difficult by the insight (Aru et al., 2012) that contrastive analyses 

may not only elicit the neural correlates of perceptual consciousness, but also prerequisites and 

consequences of perceptual consciousness. Aru et al. suggested that experimenters design studies 
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where it is possible to dissociate neural consequences and prerequisites from proper neural 

correlates of consciousness. I will argue here that multivariate analyses can provide a way to find 

evidence for which component correlates the best with perceptual consciousness without making a 

design that dissociates neural consequences and prerequisites of perceptual consciousness. Note that

differences in activity for estimated sources for different levels of perceptual consciousness are 

seldom statistically compared, but mostly used for visualization of the probable underlying sources 

(Koivisto & Revonsuo, 2010; Sergent et al., 2005). This is probably due to the multiple 

comparisons problem exploding when being brought to the source space, and also due to 

components being less well-defined in the source space. In theory, this should not pose a problem 

for multivariate analyses.

Proposed multivariate approach for detecting neural correlates of 
perceptual consciousness

In multivariate analyses, one can use the full richness of the data (C. M. Bishop, 2006) to model the 

level of perceptual consciousness. Multivariate models exploit the information inherent in the co-

dependencies between sources across time points and the co-dependencies between time points 

across sources. At this point, it is necessary to introduce some terminology. Take an MEG data set 

for a participant that has x epochs of label A (e.g. Weak Glimpse) and x epochs of label B (e.g. 

Almost Clear Experience). Each data point of each epoch, whether it be at the source or the sensor 

level, is called a feature. With n sources and t time points, one will thus have n × t features for each 

epoch. To get a metric of how much information about the labels A and B there is in the epochs of a 

given participant, one can divide his epochs into 2 sets, a training set (~80-90 % of the epochs) and 

a test set (~10-20 % of the epochs). A model is fitted to the training set. The simplest model, which 

we have also used in the studies in this dissertation, is a logistic model. A logistic model assigns a 

weight to each feature, which dependent on its sign raises the posterior probability of a given epoch 

of belonging to label A or label B. The training set is now used to predict the labels of the test set. 

For each epoch in the test set, its feature weights, based on the fitted model, are summed together. 

The predicted label for a given epoch is then the label that has the higher posterior probability. A 

classification accuracy can be calculated as the probability of correctly predicted labels in the test 

set. Whether the classification accuracy can be generalized can be tested by cross-validation, that is:

letting the training and test sets consist of different epochs (Figure 4).

In contrast to amplitude sizes in univariate testing, classification accuracies can be compared 

between components and between conditions. They may thus allow one to assess which component 

best predicts perceptual consciousness. Some precautions must be taken, however, when doing 
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multivariate analyses. Among other things, one must control the number of spatial (sources) and 

temporal (samples) features in the comparisons one make (Sandberg et al., 2014), and the 

differences in the components that one tries to classify on should be of comparable size on the level 

of the evoked response (Sandberg et al., 2014; Smith, Kosillo, & Williams, 2011).

Figure 4: Illustration of a hypothetical classification analysis and the steps involved. (a) The
classifier is to distinguish between two categories: “Aware” (red) and “Unaware” (blue). Trials are
separated into training and test sets in three different ways to ensure cross-validation. The plots

show hypothetical activity developing over time courses for 3 trials of aware and unaware
respectively. (b) The decisions reached based on the model fit in the training set. (c) Classification

is performed for 100 trials (50 aware and 50 unaware) with a non-linear decision boundary.
Adapted from (Sandberg et al., 2014).

Consistency and amplitude size

An intuition that drives why we have chosen multivariate analyses over univariate analyses in the 

studies in this dissertation is that the best neural correlate of perceptual consciousness must be the 

one that correlates the best on the trial level and not just on the summary statistic level. It is possible
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for a component to be less consistent on the trial level than another component, while showing a 

greater amplitude size when trials are averaged (Sandberg et al., 2014) (Figure 5).The consistency 

of a component on the trial level, thus, does not necessarily correlate with amplitude size on the 

summarized level. The test statistic of a univariate analysis is based on amplitude size and only 

indirectly on consistency whereas the test statistic of a multivariate analysis is based on the 

consistency of the component and the amplitude size, on the single-trial level. The intuition can thus

be restated as: consistency matters more than amplitude size. This intuition drove our interpretations

of the results of Studies 1 & 2.

Figure 5: Consistency of the NCC. Three simulated, hypothetical signals of differing consistency
and strength are plotted. All could be candidate neural correlates of consciousness (NCC), thus
reflecting differences between trials classified as “aware” and “unaware” by a participant. For the
first component, there is a small average difference, but the component is not consistently larger
for “aware” trials, making it unlikely that the component reflects awareness. The component could

reflect a prerequisite for consciousness as it has to be present for awareness, but it does not
guarantee awareness. For the second component, there is a medium average difference, and the

component is consistently larger for “aware” trials. On the single trial level, the component thus
reflects awareness and it may thus be an actual NCC. Finally, for the third component, there is a

large average difference, but the component is only found on a subset of “aware” trials, and it does
thus not consistently reflect awareness. The component could thus reflect processes that are

consequences of awareness, which occur exclusively for “aware” trials, but may not occur on every
single aware trial. Note that traditional univariate statistics based on averaged participant-specific
averages would erroneously find more evidence for the last component being the NCC proper in

this example. Adapted from (Sandberg et al., 2014).

Common procedures for MEG data in Studies 1 & 2
To understand why Studies 1 & 2 can be informative about the spatial and temporal aspects of the 

neural signal that correlates with perceptual consciousness, the origins of the 

magnetoencephalographic signal is outlined below.
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Magnetoencephalography (MEG)

Magnetoencephalography is the recording of minuscule magnetic fields and gradients at the scalp 

picked up by magnetometers and gradiometers. These magnetic fields are primarily produced by the

post-synaptic currents flowing in dendrites of pyramidal cells in the cortex. For a magnetometer, at 

any given time point, the magnetic field measured is proportional to the net effect of the post-

synaptic currents of the sources that generated it. Because the pyramidal cells of the cortex are 

ordered in a parallel manner perpendicular to the cortical surface, it is thus possible to pick up a 

measurable magnetic field. Even so, the strengths of such fields are minuscule, compared to 

ambient noise, about 8 orders smaller. Therefore, MEG is recorded in a magnetically shielded room.

Furthermore, the magnetometers are cooled down by liquid helium such that the wire becomes 

superconducting and current can be induced. If there were any resistance, the magnetic field would 

be too weak to induce current. Finally, this current is amplified by superconductive quantum 

interference devices (SQUIDS) such that voltage finally can be recorded (Papanicolaou, 2009).

The Elekta Neuromag Triux system that I had access to has 102 magnetometers and 204 

gradiometers. Gradiometers are two magnetometers placed in close proximity to one another and 

wound in such a way that what is measured is the magnetic gradient and not the magnetic flux. The 

gradient is the difference in flux over the two magnetometers making up the gradiometer. This 

means that gradiometers are more sensitive to proximate sources than to distal sources, because the 

difference in flux will be much less for a distal source compared to a proximate source. In contrast, 

magnetometers are sensitive to both proximal and distal sources, but will also be sensitive to 

distally originated noise. The magnetometers and gradiometers are placed such that they cover the 

whole head (Figure 3B).

There are two “spaces” in which data can be analysed: the sensor space and the source space. I will 

now explicate the differences between these.

The sensor space

In the sensor space, data can be represented by the 306 sensors and the positions of those on a head 

model based on the individual participant. These can, roughly, be divided into occipital, temporal, 

parietal and frontal sensors. It may, however, be very misleading to think of these sensors as 

localizing relevant activity. Due to the fact that the magnetic signal is spreading in a sphere-like 

manner from its origin and that what is measured at any given sensor will be the net effect of signal 

present at that moment in time, inferences about origin of the signal are extremely capricious in 

nature. On the other hand, though, it is possible to speak of components, event-related fields 

(ERFs), that are associated with certain cognitive operations or phenomena. These are often 
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characterized by appearing during similar time intervals and on similar sensors even between 

individual participants. P3a and N1-N2 are examples of such components that show up in both EEG

and MEG experiments. To gain more knowledge about the origin of such signals and components, 

one may turn to the source space.

The source space

In a sense, it is misleading to speak of there being two spaces where data can be analysed. Where 

data in the sensor space are what is recorded and picked up by the respective sensors, there is no 

real data in the source space. Rather the source space is a model of the origin of the recorded signal 

from the sensor space data. A first reasonable assumption is that the origin is somewhere within the 

participant's head. With that assumption one does not get very far since there is literally an infinite 

number of combinations of sources that would give rise to the signal recorded by the MEG sensors. 

With a precise anatomical image obtained in a magnetic resonance scanner the head can be 

separated into scalp, skull and brain and the brain into grey and white matter and cerebro-spinal 

fluid. On the basis of this anatomical image a forward model can be created. In brief, the forward 

model constrains the number of possible solutions and makes it possible to find the best one 

(Hämäläinen & Ilmoniemi, 1994). A forward model consists of three components: 1) a model of 

where in the head the sources are situated, 2) how the currents of these sources spread and 3) with 

what sensitivity the signal associated with the current (flux/gradient) can be picked up by the 

different sensors.

In my modelling of the source space, I used the minimum norm estimate (MNE) algorithm 

(Hämäläinen et al., 1993), an algorithm that assumes minimal prior information, namely only that 

the modelled sources are spatially restricted to the cortex. In simple terms, it aims to explain what is

observed in the sensor space, by allocating the minimal amount of total current across all sources.

A source space model based on the MNE algorithm contains a number of inferred sources, typically

~8000 cortical sources, that each have a time course, based on the durations of epochs, of estimated 

current.

Such a source space model can thus be used to assess which spatio-temporal patterns of estimated 

neural activity correlate the best with differences in perceptual consciousness (Studies 1 & 2).

Preprocessing

The described preprocessing procedures apply to both Studies 1 & 2.

The head shapes of participants were digitized and together with an anatomical magnetic resonance 

image they were used for creating a unique forward model for each participant.
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The recorded magnetic fluxes and gradients in the sensor space make up a very rich data set. With a 

sample frequency of 1000 Hz, one gets 306,000 data points per second. A Maxwell filter was used 

to apply spatio-temporal signal space separation (tSSS), which separates the brain signal from the 

external disturbances outside the sensor array, leaving only the brain signal. After applying tSSS, 

movement compensation was applied based on continuous head position measurements. tSSS and 

movement compensation were both performed using MaxFilter, version 2.2 (Elekta). A bandpass 

filter (0.5-15 Hz, Butterworth) was applied to the data. To reduce the size of the data set to a more 

manageable size, we downsampled the data to 250 Hz and epoched the data into smaller time series 

around the presentation of the target stimulus, -200 ms to 600 ms. Components related to eye 

movements and blinks were removed with independent component analysis (Hyvärinen & Oja, 

2000). The same was the case for heart beat components (only Study 2). FreeSurfer (Dale, Fischl, &

Sereno, 1999) was used to model individual cortical reconstructions and volumetric segmentations, 

and the activity of ~8000 modelled sources were distributed across the cortical surface. Dynamic 

statistical parametric mapping was used to overcome the superficial bias of MNE (Dale et al., 

2000). Even with a data set reduced in size by epoching and downsampling, the source 

reconstructed data were still enormously rich and full of spatio-temporal co-dependencies and 

therefore multivariate analyses were appropriate (Opinion: Sandberg et al., 2014).

Study 1

Methods

19 participants were administered a masking task where they were to identify a briefly presented 

target stimulus followed by a mask (Stimulus Onset Asynchrony = 33.3 ms) (Figure 6). The target 

was one of 2 simple figures. After identification, participants were to rate perceptual consciousness 

using the Perceptual Awareness Scale (Table 1). The contrast of the target stimuli were thresholded 

throughout the experiment to get a sufficient amount of each rating from the Perceptual Awareness 

Scale. 8 participants were excluded from the study (for specific reasons, see: Andersen et al., 2015).

The estimated source data were divided into 2 time ranges the N1-N2 range, ~130-320 ms, (VAN 

range), and the P3a time range, ~320-510 ms, and into 4 lobes, occipital, frontal, temporal and 

parietal. Occipital and frontal lobes were of greatest interest to compare (Koivisto & Revonsuo, 

2010), but temporal and parietal lobes and the whole brain were included for exploratory reasons. 

Multivariate analyses were then run on the 10 different spatio-temporal combinations for each of 

the 3 neighbouring PAS comparisons, No Experience versus Weak Glimpse, Weak Glimpse versus 

Almost Clear Experience and Almost Clear Experience versus Clear Experience (Table 1). These 

analyses thus included n × t features, where n is the number of sources in a lobe and t is the number 
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of time samples in a time range.

Figure 6: Paradigm and stimuli: A) First a fixation cross was presented for either 500, 1000, or
1500 ms. Following that, the target (one of two figures, rectangle or rotated rectangle) was

presented for 33.3 ms. This was immediately followed by a static noise mask presented for 2000
ms. During these 2000 ms, participants reported the identity of the target by a button press with
one hand. Finally, they indicated the clarity of their experience using the Perceptual Awareness
Scale (PAS) (Table 1). A contrast staircase, a modified 2-up-1-down, was used throughout the

experiment. B) the two target stimuli used throughout the experiment.

A second analysis was run to estimate how classification accuracy evolved over time. A multivariate

analysis was done on each time sample included in the epochs. The analyses were done in a 

cumulative manner, such that each analysis included all the time samples leading up to the one 

being added. This was done for the frontal and occipital lobes and for each of the 3 aforementioned 

PAS comparisons.

Results

The first analysis revealed that sources in the occipital lobe more accurately predicted perceptual 

consciousness than sources of any of the other lobes (Figure 7).
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Figure 7: Mean classification accuracies for each of the five lobes tested for the three PAS
comparisons for each of the two ranges: the VAN range (132-320 ms) and the P3a time range

(324-512 ms). NE vs WG is the difference of a subjective experience as such. WG vs ACE is the
experiential difference of content. ACE vs CE is the experiential difference of unambiguity. Of

special importance is it that occipital sources can be used to classify all PAS comparisons
significantly above chance. The error bars are 95 % confidence intervals tested against chance,

bootstrapped using 10000 simulations, from a mixed model having Time Range (2) and PAS
comparison (3), and Lobe (5) as fixed effects including all possible interactions. Participants (11)
were modelled with individual intercepts (random effect). Adapted from (Andersen et al., 2015).

The second analysis revealed a steep increase in classification accuracy for occipital sources during 

the N1-N2 (VAN) time range, ~130-320 ms (Figure 8).

After this time range, classification accuracy was not increased further by including more time 

points (Figure 8A). Classification accuracy for frontal sources did not seem to be associated with 

either the N1-N2 time range or the P3a time range (Figure 8B).

Conclusions

We found that participants used the Perceptual Awareness Scale to report perceptual consciousness 

in a graded manner, and that spatio-temporal information in the occipital lobe during the N1-N2 

time range was critical for distinguishing these graded differences in perceptual consciousness. This
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supports that the neural activity that most consistently correlates with graded differences in 

perceptual consciousness is early (< 300 ms) and occipitally realized. In the general discussion, I 

will discuss what this has of consequences for neural theories of perceptual consciousness such as 

Lamme's theory of recurrent processing (Lamme, 2006) and Dehaene's global neural workspace 

theory (Dehaene, 2014).

Figure 8: Mean cumulative time point classification accuracies A) for the occipital lobe and B) for
the frontal lobe tested for the 3 PAS comparisons. The light grey indicates the VAN time range A)

and the P3a time range B), respectively. Note that the largest increase in decoding accuracy
occurred during the VAN at occipital sources. The darker grey area indicates one standard error of
the mean. Curves have been smoothed by only plotting every tenth point. These points are based

on the mean of the nine samples that came before them. The standard error of the mean is
calculated over ten points as well. Adapted from (Andersen et al., 2015).
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Study 2

Methods

40 participants were administered a masking task where they had to indicate whether 2 letters 

presented alongside one another were “same” or “different” (Posner & Mitchell, 1967). Participants

participated in one of two tasks, either a perceptual or a conceptual task. Participants in the 

perceptual task were to respond “same” if the 2 letters were identical and “different” if not. 

Participants in the conceptual task were to respond “same” if the 2 letters were of the same type in 

terms of vowel- and consonanthood and “different” if not (Figure 9). Participants were to use the 

Perceptual Awareness Scale to rate the clarity of their experiences.

Figure 9:  Paradigm: A fixation cross was presented for 1000 ms, followed by a delay of 1000 ms,
to prevent forward masking of the target stimulus. A pair of letters was then presented for 33 ms
immediately followed by a mask that remained on until the participant indicated whether the 2

letters were “same” or “different”. In the perceptual task the target letters were defined as “same” if
they were identical, e.g. “rr”, and “different” in all other cases. For the conceptual task, the target

letters were defined as “same” if they were of the same type according to whether they were
consonants or vowels, e.g. “eu” or “sv”, and “different” if they were of opposite types, e.g. “ev”.

After that participants had to indicate perceptual consciousness by one of 4 ratings, No
Experience, Weak Glimpse, Almost Clear Experience or Clear Experience.

We used multivariate analyses to test whether task, perceptual or conceptual, influenced how 

predictive of differences in perceptual consciousness occipital, frontal, temporal and parietal lobes 

were during the N1-N2 and P3a time ranges. We used a stochastic approximation staircase aiming 
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at an accuracy level of 75 % (Faes et al., 2007), such that we for each participant would get a good 

distribution of all 4 PAS ratings. Note that lobes and time ranges were defined in the same manner 

as in Study 1.

2 types of multivariate analyses were done. First, we performed a multinomial analysis where all 4 

ratings were tested against one another, done for each time sample throughout the epoch duration. 

This analysis could reveal when information was present for predicting differences in perceptual 

consciousness across lobes and tasks. Second, we performed a multinomial analysis again, but 

where all 4 ratings were tested against one another using all samples from either the N1-N2 time 

range or all samples from the P3a time range. This analysis was different from the sample-by-

sample analysis in that it could also model temporal co-dependencies during the 2 predefined time 

ranges tested. Due to a conservative criterion where participants needed at least 30 trials of each 

PAS rating, only 10 participants could be included in the analyses, 6 from the perceptual task and 4 

from the conceptual task. The aim, to reiterate, was to investigate whether a non-integrative or an 

integrative approach to perceptual consciousness and cognitive context would make most sense of 

the data.

Results

The sample-by-sample analyses revealed some interesting patterns that were hard to incorporate 

into a view of perceptual consciousness where it and cognitive context are not integrated. In the 

perceptual task for the occipital sources, we found results that closely matched the sample-by-

sample analysis from Study 1, which also can be categorized as a perceptual task. All ratings 

seemed discernible from one another around ~170-270 ms (Figures 10E-H). The conceptual task, 

however, resulted in a different pattern where the graded ratings, Weak Glimpses and Almost Clear 

Experiences, seemingly could not be classified in the N1-N2 time range for the conceptual task 

(Figures 10B-C), while Almost Clear Experiences increased a little and was sustained in accuracy in

the P3a time range for the conceptual task (Figures 10C).

In general, the conceptual task showed some evidence of sustained classification accuracy through 

the P3a time range compared to the perceptual task.

Surprisingly, frontal sources could also classify perceptual consciousness in a graded manner for the

perceptual task, peaking around 300 ms (Figures 11E-H). This probably reflects the N3 component 

reported by Sergent et al. (2005), but which they report to be bimodal. In the conceptual task, 

frontal sources were more bimodal in their classification accuracy, being able to classify only No 

Experiences and Clear Experiences. Sergent et al. (2005) also used a conceptual task thus the 
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present results indicated that the bimodality of N3 might depend on task requirements. The sample-

by-sample analyses (Figures 10 & 11) revealed the information present at each individual time 

point, and can thus only model the spatial dependencies between sources.

Figure 10: Sample-by-sample analyses for occipital sources: the upper row of panels (A-D) shows
conceptual sources classification for No Experience (NE), Weak Glimpse (WG), Almost Clear

Experience (ACE) and Clear Experience (CE) respectively. The lower row of panels (E-H) shows
the same for the perceptual task. Mean classification accuracies across participants, smoothed by

taking every 10th sample and taking the mean across that sample and the 10 samples on each
side, are shown for all classifications. Shaded regions are standard errors of the mean smoothed

the same way. The 2 bars at the top indicate the width of the 2 time ranges tested in other
analyses. Vertical lines indicate 170 ms and 270 ms respectively.

- 32 -



The final planned multinomial analyses tested whether temporal dependencies played a role in 

predicting perceptual consciousness.

Figure 11: Sample-by-sample analyses for frontal sources: the upper row of panels (A-D) shows
conceptual sources classification for No Experience (NE), Weak Glimpse (WG), Almost Clear

Experience (ACE) and Clear Experience (CE) respectively. The lower row of panels (E-H) shows
the same for the perceptual task. Mean classification accuracies across participants, smoothed by

taking every 10th sample and taking the mean across that sample and the 10 samples on each
side, are shown for all classifications. Shaded regions are standard errors of the mean smoothed

the same way. The 2 bars at the top indicate the width of the 2 time ranges tested in other
analyses. Vertical lines indicate 300 ms and 436 ms respectively.
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The accuracy of classification for each PAS rating was found to significantly interact with which 

lobe was used for classification (Figure 12A). Furthermore, the accuracy of classification for each 

PAS rating was also found to significantly interact with the interaction of what task participants 

were doing and the time range during which classification was done (Figure 12B).

In many ways, the results mirrored the sample-by-sample analyses revealing the timing difference 

between the 2 tasks in when graded differences in perceptual consciousness could be classified. The

N1-N2 time range was significantly better for classifying the graded ratings, Weak Glimpses and 

Almost Clear Experiences, in the perceptual task compared to the conceptual task (Figure 12B). For

classification of graded ratings the conceptual task fared better in the P3a time range with 

significantly better classification of Almost Clear Experiences than in the N1-N2 time range (Figure

12B). This corroborates that effects on neural correlates of consciousness between tasks is greatest 

for the graded ratings.

We also found that occipital sources classified perceptual consciousness significantly better than 

frontal sources for the extreme ratings, No Experiences and Clear Experiences, where we expected 

the smallest differences between tasks. This fits well with the finding from Study 1 that occipital 

sources classified perceptual consciousness better than frontal sources.

Interestingly, the ability to classify the graded ratings in the perceptual task was not dependent on 

which lobe was used for classification. The sample-by-sample analyses suggested that the capability

of frontal sources to discern Weak Glimpses and Almost Clear Experiences during the N1-N2 time 

range was based on a peak around 300 ms, presumably the N3 (Figures 10E-H). This classification 

peak was absent for the conceptual task, where the classification was more bimodal (Figures 10A-

D). A bimodal pattern for the N3 was also reported by Sergent et al. (2005). Their task was also 

conceptual in nature; participants had to indicate visibility of numbers spelt out as words. Whether 

N3 is bimodal or graded may thus depend on task requirements. It has been argued that N3 reflects 

object processing and early categorization, but not the semantics associated with letters (Eddy, 

Schmid, & Holcomb, 2006; Hamm, Johnson, & Kirk, 2002; McPherson & Holcomb, 1999). 

Interestingly, classification accuracy for Clear Experiences did not peak until around 436 ms, the 

classical P3a peak (Sergent et al., 2005).

A potential explanation of this can be supplied by REFCON (Overgaard & Mogensen, 2014). With 

a fully crisp and clear experience, conscious access to all features of the stimuli should be available,

and the task may be solved by comparing whether the letters were the same, that is, where they 

were seen as letters. This full access may correspond to Dehaene's global workspace (2014). Thus, 
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according to an integrative viewpoint, it is possible that broadcasting to a global workspace is 

necessary for seeing the letters as letters, but importantly cognitive strategies for graded perceptions

do not, and maybe cannot, depend on such a broadcasting. With less clear experiences however, the 

task may be solved by relying on whatever features are available, that is, the early categorization of 

shape supplied by the N3. REFCON can explain this result in a cohesive way since it exactly 

predicts that the activity that will correlate the best with differences in perceptual consciousness is 

dependent on what cognitive strategies are available. Given that No Experiences are used to report 

about a cognitively independent state, the finding that No Experiences reach peak classification at 

comparable times between tasks: occipital sources: ~170 ms (Figures 9A & E), frontal sources: 

~300 ms (Figures 10A & E), temporal sources: ~ 300 ms (not shown here) and parietal sources: ~ 

170 ms (not shown here) is unsurprising. The cognition behind responding randomly when not 

having any information, No Experience, should be similar across tasks if No Experiences are 

independent of the cognitive context. In the general discussion, I will further discuss the implication

of these results in connection with the results of Study 3.

Figure 12: Illustration of the effects that Lobe and the Time Range × Task interaction had on
classification accuracy. For extreme ratings, NE and CE, occipital sources were found to be

significantly more accurate than frontal sources, whereas the interaction between time range and
task was driven by graded ratings, WG and ACE, being affected differently by the 2 tasks  (PC =

perceptual; CC = conceptual) administered. Error bars are 95 % confidence intervals.
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The current results do not fit with a non-integrative view where there is one unique spatio-temporal 

neural correlate of perceptual processing across tasks, e.g. occipital processing in the N1-N2 time 

range as Study 1 suggested. Interestingly, in the present study, the N1-N2 time range revealed a 

stable level of classification accuracy across PAS ratings, but only in the perceptual task, similar to 

that found in Study 1, corroborating the stability of this effect (Figure 12B: VAN PC). An 

integrative view, e.g. REFCON (Overgaard & Mogensen, 2014), where task requirements partly 

determine what will correlate with differences in perceptual consciousness, can make more sense of 

these data, as I will discuss in the general discussion.

Conclusions

The classification analyses revealed results that are difficult to incorporate into a non-integrative 

view of perceptual consciousness and cognitive context. Perceptual consciousness could be 

predicted in a graded manner during the N1-N2 time range, replicating Study 1 (Andersen et al., 

2015). For the conceptual task, the P3a time range showed a more graded pattern, but was less able 

to classify Weak Glimpses compared to the perceptual task (Figures 9C & 11B). Also the frontal 

sources showed differences in prediction of perceptual consciousness across tasks. In the perceptual

task, the N3 could classify graded ratings of perceptual consciousness during the N1-N2 time range 

whereas this was not possible in the conceptual task. Thus there does not seem to be evidence of 

one unique spatial-temporal neural correlate of perceptual consciousness. An integrative view of 

perceptual consciousness and cognitive context may be better able to accommodate these 

differences as I will discuss in the general discussion.

A general finding though was that occipital sources were better in predicting perceptual 

consciousness than frontal sources were and that the greatest differences between tasks were found 

in the graded ratings, Weak Glimpses and Almost Clear Experiences.

Study 3

Methods

We manipulated cognitive context by manipulating participants' top-down expectations towards 

what would be shown in subsequent trials by cueing what stimuli could be shown. Stimuli were the 

digits from 2-9. Participants had to indicate the parity of the masked digit shown. We aimed to 

estimate psychometric curves of perceptual consciousness and accuracy by presenting target stimuli

and masks at different stimulus onset asynchronies (SOA). Participants had to rate the clarity of 

their experience of the digit using the Perceptual Awareness Scale (PAS) (Table 1) (Figure 13).

Either 2, 4 or 8 digits, an equal number of even and odd digits, were shown in the cue, thus varying 
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how distinct their expectations towards the prospective stimuli were.

Figure 13: Experimental paradigm. A cue was presented, creating a top-down expectation as to
which digits could be presented. The Number of Alternatives was one of 3 levels (2, 4 or 8

alternatives). A cue was repeated for 12 trials and was then changed. A high-pitched sound alerted
participants whenever the cue changed. A fixation cross (500 ms) was followed by a delay, to avoid

forward masking. A target digit (in a digital font) was then presented between 1 and 6 frames (1
frame = 11.8 ms), which was followed by a backward mask made of random lines presented for 30

frames. An objective response was prompted as to whether the presented digit was even, e, or
odd, o. Finally, following an auditory cue, signalling that the objective response had been made,
participants reported perceptual consciousness of the target by pressing one of the buttons 1-4.

We investigated how response times, accuracy and distributions of PAS ratings varied dependent on

the distinctness of expectations and sensory saliency (duration presented). For response times and 

accuracy we also investigated their dependency on perceptual consciousness (PAS). We expected 

that the vaguer one's expectations were, the more graded perceptual consciousness participants 

would report. We defined graded ratings as Weak Glimpses and Almost Clear Experiences. This 

would also allow us to assess whether No Experiences were cognitively independent from the 

context. Cognitive independence would imply that response times and accuracy for No Experiences 

would be of equal magnitudes across any differences in cognitive context, such as sensory saliency 

and expectations.
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Results

The psychometric curves for perceptual consciousness and accuracy did not show any significant 

differences between expectations in terms of the steepness of the curve, the estimated threshold or 

the upper or lower asymptotes. The difference between the estimated threshold for accuracy and 

perceptual consciousness can be interpreted as the amount of unconscious processing (Koch & 

Preuschoff, 2007). We found no such difference in our task.

Based on the psychometric curves, we estimated a common threshold around 3 frames (~35.3 ms) 

and further investigated the distribution of PAS ratings below, at and above threshold. We found that

perceptual ratings around threshold became more graded the more vague top-down expectations 

were (Figure 14). We thus extended the finding of Nieuwenhuis & de Kleijn (2011) that cognitive 

context interacts with perceptual consciousness. They found evidence in terms of task difficulty, and

we in terms of top-down expectations.

Figure 14: Mean number of times each rating on the Perceptual Awareness Scale (Table 1) was
used below threshold, at threshold, 3 frames, and above threshold for each of the 3 conditions of
top-down expectations (Number of alternatives). Error bars are 95 % confidence intervals. Model
comparisons and statistical testing revealed that 8 alternatives was associated with fewer Clear

Experiences (CE) and more Weak Glimpses (WG) than 2 alternatives. Below threshold,
participants rated most trials as No Experiences (NE) or Weak Glimpses, while above threshold

this shifted to them rating most trials as Almost Clear Experiences (ACE) or Clear Experiences. At
threshold, participants used all gradations of the scale.

We also found that response times interacted both with top-down expectations and sensory saliency 

in a very interesting manner. In general, participants responded faster the more distinct expectations 

were, the more salient target stimuli were and the more clear experiences were, as one might expect.

This was only true, however, for Weak Glimpses, Almost Clear Experiences and Clear Experiences 
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(Table 1), thus not for No Experiences. Response times for No Experiences were of equal duration, 

as Bayesian analyses supplied evidence for, independently of differences in top-down expectations 

and sensory saliency (Figure 15). No Experiences were furthermore characterized by chance 

accuracy for all combinations of top-down expectations and sensory saliency. Similarly to how 

Weak Glimpses, Almost Clear Experiences and Clear Experiences were associated with faster 

response times the more salient stimuli were, they were also associated with higher accuracy the 

more salient stimuli were. These results thus supply evidence for the cognitive independence of No 

Experiences to differences in cognitive context.

No significant differences in accuracy was found between expectations of differing distinctness.

Figure 15: Mean response times for each rating on the Perceptual Awareness Scale (Table 1)
shown below threshold, at threshold, 3 frames, and above threshold for each of the 3 conditions of
top-down expectations (Number of alternatives). Error bars are 95 % confidence intervals. Model

comparisons and statistical testing revealed that response times for Weak Glimpses (WG), Almost
Clear Experiences (ACE) and Clear Experiences (CE) interacted both with objective differences in

stimuli, i.e. whether the stimulus was presented below, at or above threshold and differences in
top-down expectations (Number of alternatives). No Experiences (NE) did not interact however and

was not significantly different from chance as judged by the confidence intervals.

Conclusions

Based on these results, I propose that a distinction is made between uninformative and informative 

states of perceptual consciousness. In terms of the Perceptual Awareness Scale, I propose that this 

maps onto No Experience as being uninformative and Weak Glimpse, Almost Clear Experience and 

Clear Experience as being informative (Table 1). From this study, there is evidence that informative 

states are affected both by circumstances external and internal to the participant, that is the 

cognitive context. Internal differences in expectations reduce response times, and external 
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differences in sensory saliency both reduce response times and increase accuracy. Uninformative 

states, on the other hand, are cognitively independent of external and internal circumstances. This 

study also supported the robustness of the Perceptual Awareness Scale in terms of exhaustiveness. 

Despite differences in top-down expectations and sensory saliency, participants could accurately 

report when they did not experience the stimuli, and thus also when they did not have any 

information as to the appropriate response.

This claim that there exist uninformative states that are cognitively independent from both external 

and internal circumstances, that is the cognitive context, of course needs to be substantiated by 

investigating other phenomena and task settings, such as for example priming (Tulving & Schacter, 

1990) and differences in working memory load (Lavie, Beck, & Konstantinou, 2014).

In the general discussion, I will discuss whether different levels of informativeness may be reflected

in the neural responses that are associated with perceptual consciousness.

General discussion

Occipital sources and perceptual consciousness
Everyone agrees on the almost self-evident fact that the visual cortex plays a vital role in realizing 

perceptual consciousness. There is great disagreement, however, as to what neural activity 

correlates with becoming conscious of a stimulus. In the influential global neural workspace theory, 

for example, (Dehaene, 2014), it is acknowledged that occipital activity correlates with graded 

reports of subjective visibility, but not with the possibility of subjective report (Del Cul et al., 2007; 

Sergent et al., 2005). Instead, it is argued that fronto-parietal activity P3a, which is claimed to be 

non-linearly increasing from unconscious to conscious states, correlates with subjective report and 

is thus the proper neural correlate of perceptual consciousness. Another influential proposal is that 

reentrant processing in the occipital cortex is the proper neural correlate of perceptual 

consciousness (Lamme, 2006). According to Lamme, fronto-parietal activity does not correlate with

perceptual consciousness since frontal control processes can be activated even in the absence of 

perceptual consciousness (Lamme, 2010). The division of perceptual consciousness into 2 kinds, 

phenomenal and access, can be used to supply some common ground for these 2 seemingly 

diametrically opposite theories on perceptual consciousness. Block (2005) defines phenomenal 

consciousness as there being a subjective experience, using Nagel's (1974) expression that for 

subjective experiences there is something “it is like” to experience, say, the colour of a rotten 

tomato. Access consciousness on the other hand, he defines, as those contents of the subjective 

experience that can be used to control reasoning and behaviour. Both theories discussed here agree 
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that access consciousness is a real thing, and that frontal activity reflects becoming access-

conscious of stimuli. Where they disagree is whether there is such a thing as phenomenal 

consciousness at all. Lamme (2006) argued that phenomenal consciousness is a real thing because 

participants often report seeing more than they explicitly can report (Sperling, 1960), and that the 

subjective experience is realized by reentrant processing in the occipital cortex. Dehaene et al. 

(2006), on the other hand, argued that this amounts to an illusion of seeing, where for example 

change blindness paradigms (Simons & Levin, 1997) provide evidence that participants do not see 

more than they report, since otherwise it would be inexplicable why they would not notice very 

noticeable changes going on outside the scope of attention. Whether phenomenal consciousness 

exists is a thorny issue and is also discussed heavily in philosophical circles (Chalmers, 1997; 

Dennett, 1993). Instead of entering into this debate, I, in this dissertation, have mainly sidestepped 

the issue. Instead of arguing that one kind of consciousness is more proper than the other, I have 

argued that whether phenomenal consciousness exists or not, the neural activity most predictive of 

subjective ratings of perceptual consciousness should be regarded as the best neural correlate of 

perceptual consciousness. I argued that multivariate analyses were fit for assessing the predictive 

capabilities of different spatio-temporal patterns of activity. This was based on the argument that the

outcome of a multivariate analysis, the classification accuracy, reflects how consistently a spatio-

temporal pattern correlates with differences in perceptual consciousness. Univariate analyses, on the

other hand, typically indicate mean differences in amplitude that only indirectly reflect consistency. 

The intuition followed is that consistency matters more than amplitude. Using that approach we 

found evidence of occipital sources predicting differences in perceptual consciousness (Study 1: 

Andersen et al., 2015) more accurately and thus more consistently than frontal sources did (Figure 

7). The finding that this was primarily based on the N1-N2 time range (Figure 8) may be argued to 

be evidence for the validity for the concept of phenomenal consciousness. It is compatible with the 

view of Lamme (2006) that reentrant processing is what determines whether one will become 

perceptually conscious or not. On the other hand, the results seem less compatible with global 

neural workspace theory due to the inferiority of frontal sources relative to occipital sources and the

poor predictive capabilities of frontal sources in general (Figures 7 & 8). Thus one might take 

occipital activity during the N1-N2 time range to be the proper neural correlate of perceptual 

consciousness (Aru et al., 2012). I will now discuss why this may too simple an account, and why 

one should not necessarily expect these findings to generalize across different tasks.
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Non-integrative and integrative views of perceptual 
consciousness and cognitive context

A general observation about both the viewpoints of Dehaene (2014) and of Lamme (2006, 2010) 

discussed above is that they seem to envisage perceptual consciousness and cognitive context as 

independent of one another (Figure 2). A perception is formed, whether there be phenomenal 

consciousness or not, and its contents are accessed allowing for appropriate responding. This 

implies that perception is a process where all content is equally accessible, if need be, for cognitive 

control and behavioural responding. REFCON (Overgaard & Mogensen, 2014) is an example of a 

model where perceptual consciousness is dependent on the cognitive context. According to this 

model, one should not expect a uniquely localizable spatio-temporal neural correlate of perceptual 

consciousness. More specifically, REFCON proposes that 2 factors may change where and when 

one will find correlates. One is the quality of the subjective experience, as can be measured with 

PAS, and the other is which cognitive strategy is used to solve the task. If the subjective experience 

is crisp and clear, all cognitive strategies may be available since all features can be accessed. 

However, if subjective experience is more graded, only a subset of cognitive strategies may be 

available due to limited access to features. More specifically, REFCON proposes that what 

correlates with perceptual consciousness is the information that is used to solve the task at hand, 

thus the interplay of differences in perceptual consciousness and differences in task requirements 

may cause the best correlate to manifest differently spatio-temporally seen. If perceptual 

consciousness and cognitive context did not integrate, it would be hard to explain why we found 

evidence of task requirements influencing how well the 4 PAS ratings could be classified (Figures 

10, 11 & 12). One possible explanation is based on the proposal that low-level visual experience, 

roughly corresponding to our perceptual task, is graded, and that high-level visual experience, 

roughly corresponding to our conceptual task, is all-or-none (Windey & Cleeremans, 2015). This 

may explain why we find that the N1-N2 time range could successfully classify all 4 PAS ratings 

for the perceptual task, but only the dichotomous ratings for the conceptual task. This explanation is

unsatisfactory, however, when the bigger picture is considered. It seems to be incompatible with the 

finding that one of the graded ratings, Almost Clear Experiences, can be classified significantly 

better during the P3a time range than during the N1-N2 time range in the conceptual task. REFCON

is more compatible with these findings, but it is also still an account at a very general level of 

description. However, the difference in predictive capabilities of N3 between tasks may be an 

instructive example of the potential usefulness of REFCON, and so may the differences observed 

between time ranges. It must be emphasized that these explanations below of when specific ratings 

were best classified were not based on strict hypotheses, but we believe they are instructive in 
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elucidating why cognitive context matters and may form the basis for more specific hypotheses in 

the future. Our analyses (Figures 10 & 11) indicated that N3 could classify graded states of 

perceptual consciousness, Weak Glimpses and Almost Clear Experiences, significantly better in the 

perceptual task compared to the conceptual task. There is evidence that N3 reflects object 

processing and categorization but not the semantics associated with letters whereas later activity has

been associated with the extraction of semantics (Eddy et al., 2006; Hamm et al., 2002; McPherson 

& Holcomb, 1999). The information processing reflected by N3 may be sufficient for performing 

the perceptual task above chance, which requires only shape comparison. Therefore, according to 

REFCON, it is not surprising to see N3 correlating with differences in perceptual consciousness 

since this activity is directly relevant to behavioural goals in terms of task requirements. In contrast,

the N3 activity will not be sufficient for performing the conceptual task above chance since the 

semantics, vowelhood and consonanthood, needs to be extracted.

Thus REFCON is compatible with the changes in classification found between the time ranges. To 

understand these differences more generally, it is fruitful to see the differences in PAS ratings as 

involving differences in informativeness, and what cognitive strategies they allow for. First, I will 

discuss why this distinction makes sense in terms of the behavioural results from Study 3 (Andersen

& Tong, in preparation), and second I will discuss how the distinction between informative and 

uninformative states can be used to explain some of the results obtained in Study 2 (Andersen, 

Vinding, Sandberg, & Overgaard, in preparation), and what novel predictions it might lead to.

Informative and uninformative states
In the domain of perception and responses, a definition of uninformative perceptual states may be 

that uninformative states are states where neither differences external to the organism nor 

differences internal to the organism influence its responses, what I earlier have called cognitive 

independence. The data from Study 3 (Andersen & Tong, in preparation) were evidence that 

participants can use the No Experience rating (Table 1) to accurately indicate when they are in an 

uninformative state even across different cognitive contexts, such as internal differences in top-

down expectations and external differences in sensory saliency. These differences neither influenced

accuracy nor response times, and Bayesian analyses provided evidence they were of equal 

magnitude. A definition of informative perceptual states may conversely be that informative states 

are states where cognitive context does influence the responses of the organism. The data from 

Study 3 would thus count as evidence that participants can use the Weak Glimpse, Almost Clear 

Experience and Clear Experience ratings to indicate that they are in an informative state in that 

differences in top-down expectations and sensory saliency decreased response times for these 3 
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ratings selectively. Furthermore despite the influence of top-down expectations and sensory 

saliency, participants were capable of discerning different gradations of informativeness as accuracy

and response times were better the clearer a perception participants reported.

Study 3 in itself could not be used to say anything about the quality of the information associated 

with an informative state. Differences in quality of information may become apparent, however, if 

task requirements were manipulated. A strategy may be generally defined as the usage of 

information in a specific manner. Thus, if different tasks require different cognitive strategies, and if

what cognitive strategies are available depends heavily on the quality of the information, then we 

might expect that different gradations of informativeness will have both behavioural and neural 

consequences. An example of such a neural difference might exactly be what we found in Study 2. 

The spatio-temporal differences in when graded perceptual consciousness, Weak Glimpse and 

Almost Clear Experience, could be classified across tasks (Figures 10 & 11 & 12) may plausibly be 

a consequence of differences in what cognitive strategies can be applied to solve the task at hand.

The finding that No Experiences can be used by participants to assess that they are in an 

uninformative state elegantly explains why exactly this rating showed almost no variation in peak 

classification time across task requirements in Study 2 (Figures 10 & 11). If they are truly 

cognitively independent as Study 3 suggests that they are, activity relevant for classification should 

be independent of task requirements. The cognitive strategy would be similar across tasks: 1) 

ascertain the lack of information for the task at hand, 2) carry out a random response (as participants

were instructed to in all studies of this dissertation). The aforementioned predictive capabilities of 

N3 in the perceptual task, which are absent in the conceptual task, may be examples of differences 

in cognitive strategy that manifest as different spatio-temporal correlates of perceptual 

consciousness. When all cognitive strategies are available, such as they are theorized to be during 

Clear Experiences, the optimal cognitive strategy may be to integrate all information before 

committing to a response. The delayed peaking of Clear Experiences, relative to all other ratings 

(Figure 11 E-H), around the P3a peak (~ 430-440 ms) may reflect such as integration and 

broadcasting of all information, such as theorized in the global neural workspace theory (Dehaene, 

2014), which would allow for comparison of them being the same type of letter and not merely the 

same shape, which is what Weak Glimpses and Almost Clear Experiences may allow for. If only 

Clear Experiences are associated with seeing stimuli as letters, this would explain why the 

conceptual task cannot discern the graded ratings based on the N3 in the conceptual task; in terms 

of REFCON the N3 is not related to a useful cognitive strategy for solving the conceptual task. In 

this sense, our findings are compatible with a theory of a global neural workspace, but importantly 
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such a theory would only be able to explain a subset of the phenomena observed, namely those for 

Clear Experiences, which are the only ones that show the P3a peak, but not for what we observed 

for the graded ratings. Proponents of such a theory could bite the bullet and insist that only Clear 

Experiences are truly conscious and thus maintain a dichotomous view of perceptual consciousness.

This would, however, mean that the dividing point between a conscious and an unconscious 

experience would be whether or not stimuli were unambiguously seen, not whether or not there was 

an experience of content (Table 1), which does not seem to be what most people have in mind when

discussing perceptual consciousness (Chalmers, 1997; Dehaene, 2014; Lamme, 2006). I must stress 

that these specific explanations were not predicted by a priori hypotheses, but should rather be seen

as potential explanations that may motivate further studies into how task requirements may 

influence the search for neural correlates of perceptual consciousness. However, the more general 

finding that the greatest differences between tasks would be in the graded ratings was directly 

motivated by predictions of REFCON.

These explanations should thus motivate researchers to look beyond the possibility of a unifying 

spatio-temporal “proper” (Figure 2: upper level) correlate across all gradations of perceptual 

consciousness, tasks requirements, cognitive strategies et cetera. Thus, I propose, that the data 

motivate further investigation into an integrated account of perceptual consciousness and cognitive 

context (Figure 2: lower level).

Limitations – a philosophical afterthought
It is important here in closing to re-emphasize that there is no final experiment that will enable us to

choose between integrative and non-integrative accounts. Proponents of non-integrative accounts 

insisting that there is one uniquely definable spatio-temporal neural correlate of perceptual 

consciousness can keep on insisting that without committing any logical fallacies. They may after 

all insist that we have not eliminated all confounds yet, and that we, if we just search pertinently 

enough, will find the minimal neural conditions sufficient for perceptual consciousness. The 

interpretation that I am suggesting especially of the data from Study 2 is not strictly incompatible 

with a non-integrative account. Study 2 may be taken as a what-if-question, namely: what if we 

assumed that perceptual consciousness and cognitive context were integrated? How then would we 

make sense of the data that we observe? Thus my proposal of interpreting brain responses elicited 

by stimuli in different cognitive contexts from the viewpoint of an integrative account may be 

understood as a proposal that this is a fruitful way to conceptualize how the brain realizes 

perceptual consciousness that will generate new predictions and incorporate results in a cohesive 

manner. Those are the hallmarks of a good theory (Kuhn, 2012).
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Concluding remarks
Descartes (in)famously conjectured that the pineal gland was where the interaction between the 

mental and the material world occurred. One might liken the search for the (visual) neural correlates

of perceptual consciousness to a search for a metaphorical pineal gland. The pineal gland has the 

attribute of being a relatively stable structure both spatially and temporally during the lifetime of an 

organism. This dissertation casts doubt on whether the same can be said of the neural correlates of 

perceptual consciousness. We did find that occipital sources are generally better at predicting 

differences in perceptual consciousness than frontal sources, and we found evidence of the N1-N2 

time range in general being very sensitive to differences in perceptual consciousness, so it might be 

tempting to conclude that that spatio-temporally isolated neural activity is the pineal gland we have 

been looking for. According to this dissertation, that may be a premature decision. Differences 

across task requirements provided evidence that when and where we find neural correlates of 

perceptual consciousness is dependent on differences in cognitive strategy and differences in the 

informativeness of perceptual states. Committing to a theoretical approach where perceptual 

consciousness and cognitive strategy are seen as integrated can explain these differences and may 

once make us able to make precise predictions as to where and when neural correlates of perceptual 

consciousness using contrastive analyses will be found. Although, we will never be able to strictly 

prove that an integrative account is better than a non-integrative account, integrative accounts can 

show their pragmatic usefulness by generating context-dependent predictions that can be validated. 

Precisely that pragmatic usefulness is what we should strive after as good scientists.

Future studies
Behavioural evidence showed that differences both external and internal to the organism affected 

informative and uninformative states differently. It would be interesting to test how well this finding

generalizes to other external and internal differences, such as differences in priming and load of 

working memory.

Given that cognitive context affects informative and uninformative states differently, it is expected 

that this would result in effects on the usual event-related components such as the P3a. Furthermore,

it might do so qualitatively different in terms of the cognitive strategies the task at hand requires.

The next generation of magnetoencephalographic sensors that can be brought 3 centimetres closer 

to the head, which potentially increases the signal by a factor of 27, may help to make more precise 

source estimates of the occipital activity that seems so crucial for realizing the subjective experience

of perceptual consciousness we all know so well.
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The areas of the brain that were used for classification in this dissertation were coarsely defined. 

With more nice and specific distinctions, one may be able to look at for example V1 or V2. This 

would require some functional demarcation as well, which might be possible with the next 

generation of sensors.

The generality of spatio-temporal patterns can also be tested by applying between-participants 

analyses, where one participant's signal is used to predict another participant's perceptual 

consciousness.
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English summary
What consciousness is is one of the perennial questions that have vexed human beings throughout 

known history. In this dissertation, I have used magnetoencephalographic recordings to investigate 

what happens in the brain when one becomes conscious of a visual stimulus. I have also 

investigated how one can manipulate when and how one becomes conscious. It might seem self-

evident that occipital activity is what makes us become conscious of visual stimuli, but many 

theories regard frontal activity as crucial for becoming conscious of stimuli. Based on 3 

experiments and an opinion article, I found that occipital activity best explained the differences in 

perceived clarity that participants reported. My analysis of the magnetoencephalographic data was 

based on multivariate analyses since, as we argue in the opinion article, they are more sensitive than

traditional univariate analyses are to how consistently spatio-temporal patterns of neural activity 

correlate with changes in perceptual consciousness. In experiment 1, I found that perceived 

differences in perceptual consciousness were best explained by occipital activity during an early 

range (~130-300 ms). This might lead one to believe that exactly this spatio-temporal activity could 

by itself explain the becoming conscious of visual stimulation. Experiment 2, however, showed that 

one's theory must be more nuanced, and that task requirements and cognitive strategies influence 

the timing of activity and which activity that can explain differences in perceptual consciousness. 

Experiment 3 showed that top-down expectations and sensory saliency changed how informative 

different levels of perceptual consciousness were, and that participants have insight into when they 

are in an informative state or not, no matter how minuscule the amount of information is.

Altogether, I have found evidence that the occipital lobe is the most important area for realizing 

visual perceptual consciousness, but that the exact timing and the involvement of other brain areas 

depend on the availability of cognitive strategies and how informative one's perceptual state is. 



Dansk resumé
Hvad bevidsthed er, er et af de tilsyneladende evige spørgsmål, som menneskeheden har måttes 

brydes med igennem historien. Måske vi nu er i en tidsperiode, hvor vi har muligheden for at 

begynde at svare på det. I denne afhandling har jeg undersøgt, hvordan man ved hjælp af 

magnetoencefalografi kan afgøre, hvilke dele af hjernens aktivitet der stemmer overens med det at 

blive bevidst om visuelle indtryk, og hvordan man kan påvirke og forandre denne bliven bevidst. 

Det kunne virke selvindlysende, at om man bliver bevidst om visuelle sanseindtryk, må afhænge af 

occipitallappen, siden det er her den tidlige visuelle processering finder sted, men i mange teorier 

ses aktivitet i frontallappen som afgørende for, om man kan blive bevidst. Baseret på 3 

eksperimenter fandt jeg, at generelt set forklarede neural aktivitet i occipitallappen bedst de 

forskelle i klarheden af visuelle indtryk, som man kan fremprovokere ved hjælp af velkontrollerede 

eksperimentelle opstillinger. I min analyse af det magnetoencefalografiske data, brugte jeg 

multivariate analyser, som er følsomme over for, hvor konsistent et bestemt mønster af neural 

aktivitet sammenfalder med det at blive bevidst om sanseindtryk. I eksperiment 1 fandt jeg, at tidlig 

aktivitet i occipitallappen (~130-300 ms) konsistent faldt sammen med det at blive bevidst om 

sanseindtryk. Dette kunne foranledige en til at antage, at præcis denne rum-tidslige aktivitet 

forklarer bevidsthed i den visuelle sans. Eksperiment 2 viste dog, at billedet måtte være nuanceret, 

og at man må tage højde for, hvilke mål man har og kognitive strategier man bruger, når man skal 

afgøre, hvilken aktivitet der sammenfalder med det at blive bevidst. Eksperiment 3 viste, at 

forventninger til, hvad der ville blive vist, ændrede, hvor informative forskellige 

bevidsthedstilstande var, og at forsøgspersoner har selvindsigt i, hvornår de er i en informativ 

tilstand eller ej, hvor lille den mængde information end måtte være.

Alt i alt har jeg fundet evidens for, at aktivitet i occipitallappen er det vigtigste område for at 

realisere visuel bevidsthed, men at tidspunktet og involvering af andre hjerneområder for denne 

realisering afhænger af kognitiv strategi og hvor informativ en perceptuel tilstand, man er i. 
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Contrasting conditions with and without awareness has been the preferred method for
investigating the neural correlates of consciousness (NCC) for decades, yet recently it
has been suggested that further insights can be made by moving beyond this method,
specifically by meticulously controlling that potential precursors and consequences of
the NCC are not mistaken for an NCC. Here, we briefly review the advantages and
potential pitfalls of existing paradigms going beyond the contrastive method, and we
propose multivariate decoding of neural activity patterns as a supplement to other methods.
Specifically, we emphasize the ability of multivariate decoding to detect which patterns
of neural activity are consistently predictive of conscious experiences at the single trial
level.This is relevant as the “NCC proper” is expected to be consistently predictive whereas
processes that are consequences of consciousness may not occur on every trial (making
them less predictive) and prerequisites of consciousness may be present on some trials
without conscious experience (making them less predictive).

Keywords: consciousness, multivariate decoding, multivariate pattern analysis, contrastive analyses, MEG, fMRI

THE EVOLUTION OF CONTRASTIVE ANALYSIS
In early outlines of contrastive analyses in consciousness research,
emphasis was placed on comparing pairs of psychological phe-
nomena of which one was conscious and the other was not
(e.g., Baars, 1994). Behavioral characteristics and neural activity
could thus be compared between the conscious and unconscious
cases. In the case of vision, for instance, neural activity related
to masked and unmasked stimulus presentations (Dehaene et al.,
2001) or to stimuli presented at various durations (Kjaer et al.,
2001) has been investigated. Over the last two decades, meth-
ods have evolved so rapidly that it is now difficult to determine
what is a natural extension of the contrastive analysis method
and what is an alternative method. In this article, we discuss
some of the recent developments, and we consider how mul-
tivariate decoding, as an extension of or in combination with
contrastive analysis, can contribute to identifying neural correlates
of consciousness (NCC).

Many recent paradigms were developed in order to avoid con-
founds present in the original proposals and experiments. For
instance, if stimulus duration is varied, the two conditions no
longer differ exclusively in terms of the subjective experience of
the participant, but also in terms of an important stimulus char-
acteristic, which could be expected to have an impact on conscious
as well as unconscious processing (Overgaard, 2004). For this
reason, some scientists have preferred paradigms where the phys-
ical parameters remain stable, but only the conscious experience
varies. This has been done, for instance, using masked stimuli
by contrasting trials based on reports of awareness (e.g., Babiloni
et al., 2010). Furthermore, in some relatively early studies par-
ticipants primarily performed objective tasks, and to the extent

that awareness reports were used, they were used to confirm that
conditions could be treated as subliminal/supraliminal (Dehaene
et al., 2001; Kjaer et al., 2001; Silvanto et al., 2005). In contrast,
in some later studies, scientists have more often preferred to base
analyses on trial-by-trial reports of awareness (or confidence) even
when multiple physical stimulus conditions are used (Christensen
et al., 2006; Koivisto, Mäntylä et al., 2010). The use of awareness
reports can be seen as a necessary consequence of the wish to
control for physical parameters. Methodologically speaking, these
reports separate conditions when trials no longer differ in terms
of objective characteristics. But their use is also partly a conse-
quence of theoretical arguments in favor of the crucial role of
awareness ratings as a key measure of validity in consciousness
research (Overgaard, 2006, 2010). Some scientists even prefer to
keep accuracy stable so that only the level of awareness varies
between conditions (Lau and Passingham, 2006; Lau, 2008) or
to examine the correlates of accuracy and awareness separately
while ensuring that mask and stimulus have very different neural
signatures (Hesselmann et al., 2011).

Common to most recent studies is that the need to con-
trol for potential confounds has resulted in a shift from the
examination of complete unawareness versus complete awareness
to the examination of smaller differences in graded awareness
ratings or changes in the probability of obtaining reports of
awareness. As the change between conscious and unconscious
perception occurs more suddenly across stimulus intensity for
the attentional blink (than for masking), this paradigm has
sometimes been preferred (e.g., Sergent et al., 2005) although
others are reluctant to use the paradigm as they suspect it
reflects failure to attend (possibly conscious) perception (e.g.,
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Lamme, 2006). Bistable perception provides another method
for ensuring both conscious and unconscious perception under
equal stimulation conditions. Many earlier studies using ambigu-
ous perception examined differences in neural activity related
to ambiguity/non-ambiguity (Lumer et al., 1998) or reversals
of perception (Kornmeier and Bach, 2004), but some have
also compared neural activity related to one perceptual state
versus another (Andrews et al., 2002; Sterzer and Rees, 2008;
Sandberg et al., 2013).

RECENT DEVELOPMENTS
Recently, it has been argued that it is possible that studies using
contrastive analyses cannot distinguish between a NCC and its pre-
requisites (NCC-pr) and consequences (NCC-co; Aru et al., 2012).
An NCC-pr is neural activity associated with task specific initial
processing (which predicts later conscious experiences) whereas
an NCC-co is neural activity related to a process that occurs for
conscious stimuli only, for instance encoding in working memory.
Aru et al. (2012) have argued that by manipulating stimulus pro-
cessing in various ways, NCC-pr and NCC-co should change, but
the NCC should remain stable. In one experiment, Melloni et al.
(2011) manipulated the stimulus expectation across conditions
and found that an early EEG component (around 100 ms) only
reflected differences between seen and unseen stimuli when there
was no expectation of the stimulus, and similarly a later compo-
nent (the P300) only correlated with awareness when stimuli had
to be encoded in working memory, but not when a representation
was already present. In contrast, a component between the two, at
around 200–300 ms, correlated with conscious perception inde-
pendently of condition. This indicated that the first component
was an NCC-pr, the middle component at 200–300 ms a likely
NCC candidate, and the P300 an NCC-co.

Although this method for moving beyond contrastive analysis
is certainly novel and useful, it assumes one can evoke the same
experience by means of multiple, very different manipulations.
However, there is no guarantee that the experience is identical
even if the same proportion of awareness responses is obtained
across conditions. Ratings of awareness can be viewed as a deci-
sion process in which evidence is gathered for a particular response
(e.g., Lau, 2008), for example “seen,” but when different manipu-
lations are made, the decision axis is no longer shared, and thus
it is unknown if the NCC can be expected to remain unchanged
(Jannati and Di Lollo, 2012). A potential solution to this could be
the use of more detailed awareness ratings, but it may also be possi-
ble to improve the paradigm in general using decoding approaches
as we will return to later.

Accordingly, we still have no paradigm to investigate NCCs
without potential systematic confounds. Newer paradigms, to
some degree, have solved problems in previous paradigms, yet have
introduced new ones. For this reason, we argue that converging
evidence across multiple paradigms is essential in the search for
the “NCC proper” (Overgaard, 2011).

MULTIVARIATE DECODING
Here, we use the term multivariate decoding [also sometimes
referred to as multivariate/multi-voxel pattern analysis, pattern
classification, “brain reading,” or simply decoding (Haynes and

Rees, 2006; Norman et al., 2006; Haynes, 2009)] as an umbrella
term for a group of analysis techniques for which the goal, in
this context, is to decode the conscious experience of a partic-
ipant based on large amounts of brain data. We will exemplify
the general logic behind multivariate decoding by example of a
within-subject decoding.

Take an MEG dataset (Figure 1), for instance, of a subject with
x epochs of class A (e.g., “aware”) and x epochs of class B (e.g.,
“no awareness”): each data point of each epoch is called a feature.
For a given dataset with n sensors/sources and t time points, one
will thus have n X t features for each epoch. The dataset is then
divided into two parts, a training set (often 90% of the data) and
a test set (the remaining 10%; Figure 1A). A model is fitted to
the training set and each feature is assigned a weight. Dependent
on the sign of a given weight, it raises the posterior probability of
a given epoch to belong to class A or B, respectively. The fitted
training set, with its feature weights, is then used to predict the class
of each epoch for the test set (Figure 1B). The predicted class label
for a given epoch is the class label that has the highest posterior
probability assigned to it when the feature weights for that epoch
are summed together. One can then obtain a classification score,
which is the percentage of correctly classified epochs. Figure 1C
shows an example of this. To test the generality of the classification
score, one can cross-validate the score by dividing the data set into
training and test sets in different ways.

We believe that multivariate decoding has a role in neuroscien-
tific consciousness research for several reasons and in the following
we will go through these. We will, however, first emphasize that
decoding results should be interpreted with care: although a given
mental state can be decoded above chance from particular neu-
ral activity, this does not in itself imply a causal relationship. In
this sense, multivariate decoding shares some of the limitations of
correlation studies. Multivariate decoding, nevertheless, opens up
new possibilities that have not previously been available.

INCREASED SENSITIVITY OF MULTIVARIATE DECODING
One main advantage of multivariate decoding is the greater sensi-
tivity than that of traditional mass-univariate approaches typically
used in contrastive analyses (i.e., the testing of single variables one
at a time; Haynes and Rees, 2006; Norman et al., 2006). Mul-
tivariate decoding is more sensitive that univariate testing due to
pooling of information and the informativeness of the co-variance
of the features (Haynes and Rees, 2006). Furthermore, univariate
tests typically test for linear relationships whereas the nature of
the relationship does not need to be specified to achieve successful
decoding (Haynes, 2009). The advantage of multivariate decoding
in consciousness research has been shown for fMRI where Haynes
and Rees (2005) showed that decoding based on V1–V3 voxels
combined was more predictive of perception during binocular
rivalry than decoding based on the combined mean of the same
voxels. Similarly, using MEG Sandberg et al. (2013) showed that
perception during binocular rivalry can be decoded at an accuracy
just a few percent below peak decoding accuracy (around 75%)
using just 10 occipital sensors, which were individually at chance
(below 51.5%).

At its core, all univariate testing regards data points as indepen-
dent of one another, which is evidently false for both MEEG and
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FIGURE 1 | Illustration of a hypothetical classification analysis and the

steps involved. (A) The classifier is to distinguish between two categories:
“Aware” (red) and “Unaware” (blue). Trials are separated into training and test
sets in three different ways to ensure cross-validation. The plots show

hypothetical activity developing over time courses for ten trials of aware and
unaware respectively. (B) The decisions reached based on the model fit in the
training set. (C) Classification is performed for 100 trials (50 aware and 50
unaware) with a non-linear decision boundary.

fMRI data. It is precisely the heavy spatial and temporal correla-
tions of neuroimaging data that make them fit for multivariate
analyses. In contrast to univariate tests, multivariate tests can
facilitate the information contained in the temporal and spatial
dependencies between data points in both sensor and source space
(MEEG) and in voxel space (fMRI) in a single test.

FINDING CONSISTENT CORRELATES USING MULTIVARIATE
DECODING
Multivariate tests are more sensitive to differences between con-
ditions that are present during all epochs, and that they are less
sensitive to differences between conditions that are only present
during some of the epochs. Indeed, Haynes (2009) emphasized

www.frontiersin.org October 2014 | Volume 5 | Article 1250 | 3

http://www.frontiersin.org/
http://www.frontiersin.org/Consciousness_Research/archive


Sandberg et al. Multivariate decoding and contrastive analysis

that a core NCC (or “NCC proper”) should in principle be able
to predict a conscious state perfectly. From this it follows that
higher decoding accuracy is generally a sign of greater representa-
tional accuracy although it must be emphasized that care should
be taken when comparing decoding accuracies across different
brain areas, and there are several aspects to consider. For instance,
Kamitani and Tong (2006) found that perceived motion direc-
tion was only decoded as well from MT+ as from earlier visual
areas V1–V4 when the same number of voxels was used. Indeed,
a later article by Smith et al. (2011) mention that when compar-
ing fMRI decoding accuracies across conditions, participants, or
brain regions, it is important that several factors are controlled
for including the number of voxels and stimulus repetitions (and
we might add that not only the number of spatial, but also the
number of temporal, features should be controlled for). Addi-
tionally, they specifically emphasize the importance of controlling
for or taking into account the mean amplitude of the compo-
nent of interest as they show that decoding accuracy increases as
a function of mean amplitude even if specificity is not increased.
The function with which classifier accuracy increases as a func-
tion of response amplitude (measured as percent signal change for
fMRI) can nevertheless be estimated and compared across areas
for a more valid comparison of decoding accuracy. A simpler, but
not always feasible solution is to compare components of equal
amplitude.

A note of caution is necessary, however: even when mean ampli-
tude is controlled for, the obtainable signal from two components
may differ in their signal-to-noise ratios (for instance, if the angle
of the neurons prevents a good signal in MEEG). This necessi-
tates that one is cautious when interpreting differences in accuracy
between MEEG components unless one has a good way to esti-
mate differences in noise ceilings. Such estimations are possible
with encoding models (Kay et al., 2008) or with representational
similarity analysis (Nili et al., 2014), but it is presently an unre-
solved issue for decoding models and further work in this field
is important for ensuring the validity of comparisons of decod-
ing accuracies. It should be emphasized that the issue is not likely
to be dramatic and presently a rough estimate of noise ceiling
may be achieved by prior knowledge of decoding accuracies across
different tasks for various brain regions/components.

Univariate tests are of course sensitive to differences that are
present on all epochs, but crucially they can, in addition, be sensi-
tive to differences that appear only on some epochs, but show some
average difference between conditions (e.g., aware/unaware). This
has important implications for the attempt to separate NCC-pr,
NCC, and NCC-co. In Figure 2, we show simulated data with three
components for which there are average differences between tri-
als reported as “aware” and “unaware” by a participant. We would
expect the actual NCC to vary consistently with the conscious
experience – whenever the participant has an experience of the
stimulus, the relevant component should reflect this. The NCC-pr,
however, might be present without the NCC on some trials (i.e.,
one particular prerequisite of conscious experience was present
on a trial, but perhaps some others were not, and the participant
thus had no experience) in which case the component becomes an
unreliable predictor and should not be assigned high weights by
the classifier when all data are taken into account, and it should

FIGURE 2 | Consistency of the neural correlates of consciousness

(NCC). Three simulated, hypothetical signals of differing consistency and
strength are plotted. All could be candidate NCC, thus reflecting differences
between trials classified as “aware” and “unaware” by a participant. For
the first component, there is a small average difference, but the
component is not consistently larger for “aware” trials, making it unlikely
that the component reflects awareness. The component could reflect a
prerequisite for consciousness (NCC-pr) as it has to be present for
awareness, but it does not guarantee awareness. For the second
component, there is a medium average difference, and the component is
consistently larger for “aware” trials. On the single trial level, the
component thus reflects awareness and it may thus be an actual NCC.
Finally, for the third component, there is a large average difference, but the
component is only found on a subset of “aware” trials, and it does thus not
consistently reflect awareness. The component could thus reflect
processes that are consequences of awareness (NCC-co), which occur
exclusively for “aware” trials, but may not occur on every single aware trial.
Note that traditional univariate statistics based averaged participant-specific
averages would erroneously find more evidence for the last component
being the NCC proper in this example.

produce suboptimal decoding accuracy when used to train/test
the classifier alone. This corresponds to the first component in
Figure 2. The NCC-co, on the other hand, might not occur after
each single NCC component (even if it occurs after some NCC
components), and it should never occur without an NCC compo-
nent. It is thus expected to be similarly suboptimal for decoding
even if it produces very large responses on some trials and a large
average difference. This corresponds to the third component in
Figure 2. The actual NCC is thus expected to be consistently
the most predictive at the single trial level even if it does not
produce the largest average difference. This corresponds to the
second component in Figure 2. As mentioned above, multivariate
decoding approaches are able to identify the most consistent cor-
relates, but traditional univariate analyses typically base statistics
on participant-specific means and would in our example find sig-
nificant evidence in favor of the third component even though it
only occurs on some trials. Importantly, if the aim is to compare
components, as in our example (Figure 2), univariate tests are not
readily interpretable. There is no straightforward interpretation of
what a difference in amplitude between components means (Luck,
2014). In comparison, the interpretation of differences in decod-
ing accuracy is straightforward – it simply means that the pattern
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holds more information about the label of the state, say “aware” or
“unaware.”

In cases where the confounding processes occur on every sin-
gle trial with an awareness response, multivariate decoding on
its own will not be able to distinguish between NCC and NCC-
pr/NCC-co as all responses could be equally predictive. For this
reason, we believe that the optimal paradigm is a combination of
decoding and the methods suggested by Melloni et al. (2011) and
Aru et al. (2012). One way to combine methods would be to use
cross-task decoding – i.e., using several tasks resulting in similar
conscious experiences and training/testing on different tasks using
a leave-one-out procedure. In this case, decoding performance
should be best for components that generalize across experimental
contexts.

Using multivariate decoding on MEG data, a study by our group
have found that conscious experience during binocular rivalry was
predicted relatively accurately by activity around 130–320 ms after
stimulus onset and that an earlier and a later component was
not consistently predictive (Sandberg et al., 2013). In an addi-
tional (ongoing) MEG study, multivariate decoding furthermore
showed that activity around this time was the most predictive of
small, graded differences in the clarity of conscious experience
on the single trial level (Andersen et al., in preparation). Simi-
larly, decoding can be used on different brain areas in turn in
order to compare how consistently predictive these are separately
(and/or combined; Norman et al., 2006). For binocular rivalry,
this was done for V1–V3 by Haynes and Rees (2005) and across
the cortex by Sandberg et al. (2013). Lastly, it should be acknowl-
edged that when doing multivariate analyses, “decoding” is not
strictly necessary. There are ways of doing “encoding” as well,
where one can extract parameters from the model, as in classi-
cal univariate models. Encoding applications are at the moment,
however, less available than decoding applications, both theoreti-
cally and practically, but see Allefeld and Haynes (2014) for a novel
approach.

OTHER POSSIBILITIES USING MULTIVARIATE DECODING
The use of multivariate decoding opens up for potential research,
which would otherwise be difficult or even impossible to conduct.
For MEG, conscious experience can be decoded using only a few
milliseconds of data gathered within the first 200 ms after stimulus
presentations (Sandberg et al., 2013, 2014). Particularly, if near-
perfect, near real-time decoding can be achieved, it may be possible
to exploit such speed in the control of brain-computer interfaces.
At present, one study was able to achieve above 85% decoding
accuracy for three of eight participants (and around 95% for one;
Sandberg et al., 2013). In comparison, univariate decoding (i.e.,
using the single best sensor at the single best time point) resulted
in lower accuracies (around 10% lower), and would furthermore
require both time point and sensor to be specified in advance.
Additionally, other studies have shown cases in which multivariate
decoding is above chance in the absence of an average activity
difference (Sterzer et al., 2008).

Because decoding can be accomplished prior to report, it raises
the possibility that an MEG based brain-computer interface could
be used to generate changes in the environment even before they
are produced by the motor behavior of the individual, which could

be of key importance in the study of overt behavior and sense of
agency. Furthermore, neural correlates can be analyzed before and
after the preparation to report in the attempt to filter out cor-
relates of introspection, metacognition, and motor preparation.
And finally, fast and accurate decoding allows for manipulations
of stimuli or brain activity (using TMS, for instance) around the
time where an event is experienced, but before it is reported, and
it may allow for the study of awareness without report.

Haynes and Rees (2006) emphasized the importance of the then
unresolved issue of how well activity generalizes over time, across
situations (paradigms) and even across participants. This can be
examined by conventional methods using correlations, but decod-
ing provides a method of examining whether minor changes are
critical or whether the overall patterns are generally maintained.
Haynes and Rees (2005) used fMRI to examine drops in decoding
accuracy across days, but the first long-term study was conducted
by Sandberg et al. (2014), who found that the decrease in decoding
accuracy within participants across 2.5 years was only around 1%,
which was comparable to the drop across a few days. This study
also found that the drop when attempting to generalize across
participants (even at the source level) was much greater (around
10%). Further studies examining whether minor details in patterns
of activity predict related changes in perceptual experience can be
used to address theoretical questions about multiple realization in
the brain.

It has also been established that it is possible to decode the
conscious experience of one individual using a classifier trained
on a different individual although the accuracy is lower than for
within-individual decoding (Poldrack et al., 2009; Haxby et al.,
2011; Sandberg et al., 2013, 2014). This opens up possibilities that
so far have been outside the reach of cognitive neuroscience meth-
ods. One might apply multivariate decoding to investigate whether
neural correlates generated in experiments using one paradigm
can be used to train a classifier to decode the experience in other
paradigms as we discuss above. Furthermore, between-participant
decoding opens possibilities of decoding across groups for which
it is uncertain whether one has conscious experiences, such as
vegetative or minimally conscious patients. When consciousness
has been examined in non-human animals, methods such as flash
suppression have been used to ensure the validity of report as the
stimuli are bistable but conscious perception can be manipulated
by the experimental setup (Sheinberg and Logothetis, 1997). Such
or similar methods could in principle also be used with patients,
and it could be possible to decode both within individuals but also
to examine how well classifiers generalize from healthy individuals
to reduced consciousness patients. Here again, the improved accu-
racy of multivariate decoding provides an advantage compared to
univariate approaches.
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Abstract
Two electrophysiological components have been extensively investigated as candidate neural correlates of perceptual
consciousness: An early, occipitally realized component occurring 130–320 ms after stimulus onset and a late, frontally realized
component occurring 320–510 ms after stimulus onset. Recent studies have suggested that the late component may not be
uniquely related to perceptual consciousness, but also to sensory expectations, task associations, and selective attention. We
conducted a magnetoencephalographic study; using multivariate analysis, we compared classification accuracies when
decoding perceptual consciousness from the 2 components using sources from occipital and frontal lobes. We found that
occipital sources during the early time range were significantly more accurate in decoding perceptual consciousness than
frontal sources during both the early and late time ranges. These results are thefirst of its kindwhere the predictive values of the
2 components are quantitatively compared, and they provide further evidence for the primary importance of occipital sources
in realizing perceptual consciousness. The results have important consequences for current theories of perceptual
consciousness, especially theories emphasizing the role of frontal sources.

Key words: classification, consciousness, magnetoencephalography, neural correlate of consciousness, perception

Introduction
Ever since Baars (1988) argued for the possibility of investigating
perceptual consciousness using contrastive analyses, perceptual
consciousness has been investigated with a number of methods.
For example, functional magnetic resonance imaging (fMRI)
studies have identified activity in frontal (Dehaene et al. 2001;
Lau and Passingham 2006) and occipital (Ffytche et al. 1998)
areas as candidate neural correlate(s) of consciousness (NCC(s)).
Electroencephalographic studies have shown that there are at

least 3 event-related potentials (ERPs) of interest for perceptual
consciousness, about 100, 200, and 400 ms after the onset of a
stimulus with source reconstructions localizing them in the oc-
cipital lobes, occipito-temporal lobes, and fronto-parietal lobes,
respectively (Sergent et al. 2005; Fahrenfort et al. 2007; Veser
et al. 2008), which is in agreement with the above-mentioned
fMRI findings. Magnetoencephalographic (MEG) studies have re-
ported event-related fields (ERFs) corresponding to these ERPs
(Vanni et al. 1996; Liu et al. 2012; Sandberg et al. 2013). In this
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study, we examine which spatial and temporal components of
the MEG are the most predictive of graded levels of perceptual
consciousness in a visual identification task. Before describing
our study in greater detail, some theoretical distinctions must
be made and some theories must be recounted.

Themaindistinctions relate to the definition of consciousness.
Most importantly, it should benoted thatwe investigate conscious
contents andnot conscious states. Examples of differences in con-
scious states are differences between being awake, being asleep,
being in a coma, etc. (Laureys et al. 2004). An example of a differ-
ence in conscious content is whether or not a briefly flashed
stimulus was perceived. A further distinction can be made be-
tween becoming conscious of a stimulus and remaining conscious
of that stimulus. Most commonly, stimuli are presented briefly or
obscured in somemanner in consciousness experiments, and the
activity that predictswhetherornot a stimuluswasperceived con-
sciously is examined. It is this “becoming conscious” of a stimulus
that we examine in this study. Alternatively, one might examine
the sustained activity related to consciously perceiving a stimulus
for as long as it is presented. We do not examine this aspect as it
would require a very different experimental paradigm.

A final distinction can be made between phenomenal con-
sciousness, the experience of perceiving something, and access
consciousness, the availability of these perceptions for action
preparation, verbal report, etc. (Block 2005). Although conceptu-
ally important, this distinction is nevertheless very difficult to
make experimentally as most studies, including the present,
rely on participants’ reports for separating trials intowhat degree
stimuli were consciously perceived. For this reason, we do not in-
terpret our findings in terms of access and phenomenal con-
sciousness, and we do not make any claims as to whether our
results reflect one or the other.

The experimental findings mentioned in the first paragraph
are reflected in a number of theories about which specific activ-
ities correlate directly with perceptual consciousness. Crucially
for the present study, these theories differ as to whether “early”
differences in occipital activity around 130–300 ms (the N1 and
N2 components) or “late” differences in frontal activity after
300–600 ms (the P3a) constitute the proper NCC (Aru, Bachmann,
et al. 2012). There are also studies suggesting that changes in the
P1 component (100 ms; Pins and Ffytche 2003; Veser et al. 2008)
correlate with differences in perceptual consciousness, but
these differences are reported much less consistently than for
the N1, N2, and P3a components [for a review, see Koivisto and
Revonsuo (2010)]. Evidence has also been reported for the P1 com-
ponent correlating with differences in attention (Aru, Axmacher,
et al. 2012) rather than perceptual consciousness per se. For these
reasons, the P1 is generally not considered a main candidate for
the correlate of perceptual consciousness, and the components
of interest in the present study are thus the N1/N2 and the P3a.

In the Global Workspace Theory (GWT) of Baars (2005), the
variation of it by Dehaene et al. (2006) and Dehaene (2014), and
in the Higher-Order Thought (HOT) theory of consciousness
(Lau and Rosenthal 2011), differences in late (P3a) frontal activity
correlate with differences in perceptual consciousness. The
frontal activity is theorized to reflect global broadcasting of per-
ceptually integrated stimuli, and it is this broadcasting that
makes it conscious according to the GWT. Sergent et al. (2005) ar-
gued that frontal components after 300 ms correlatewith percep-
tual consciousness in a bimodal manner: Absent when
participants are not conscious of a stimulus, and present when
participants are conscious of a stimulus.

The P3a component has been observed to be bimodal in sev-
eral experiments (Del Cul et al. 2007; Koivisto and Revonsuo

2010), including infant studies (Kouider et al. 2013), and to be ab-
sent in patients with prefrontal damage (Del Cul et al. 2009). Ac-
cording to GWT proponents, the bimodality of the proposed NCC
suggests that perceptual consciousness is dichotomous: You ei-
ther see something or you do not. We thus have one set of theor-
ies and studies, arguing that consciousness is dichotomous and
related to the late P3a component and to activity (mainly) in
frontal cortical areas.

In contrast, in the recurrent processing theory of Lamme
(2006) and the research on the Visual Awareness Negativity
(VAN) of Koivisto and Revonsuo (2010), differences in early occipi-
tal activity (N1/N2) are found to be the best correlate of differ-
ences in perceptual consciousness. Recurrent processing
between higher and lower regions of the occipital lobes is theo-
rized to be sufficient for perceptual consciousness in Lamme’s
theory (2006).

Furthermore, several behavioral studies have indicated that
perceptual consciousness is better understood as graded with le-
vels between conscious and unconscious (Overgaard et al. 2006,
2010; Sandberg et al. 2010; Nieuwenhuis and de Kleijn 2011;
Wierzchoń et al. 2012).

An important consequence of the proposal that perceptual
consciousness is graded is that more than one NCC may exist.
Hypothetically, each grade of experience may be associated
with activity in a different cortical area, or it may depend on dif-
ferent levels of activity in a single area. For instance, the Percep-
tual Awareness Scale (PAS; Ramsøy and Overgaard 2004), used in
numerous studies (Ruzzoli et al. 2010; Melloni et al. 2011; Ludwig
et al. 2013; Faivre and Koch 2014), has 4 qualitatively different rat-
ings. The differences between the neighboring ratings can be
summarized as follows: First and second ratings: the presence
of subjective experience as such; second and third ratings: the
presence of (unclear) content; third and fourth ratings: the pres-
ence of perceptually clear and unambiguous content. It is thus
possible that we should not just be looking for one all-or-none
component predicting perceptual consciousness, but instead
several components or a graded modulation of a single compo-
nent. The occipito-temporal N2 has been observed to vary in a
graded manner (Sergent et al. 2005), and it may thus be argued
that this component is in fact a more likely correlate of percep-
tual consciousness.

Recent electrophysiological studies also cast doubt onwhether
late frontal components specifically correlatewithperceptual con-
sciousness. Melloni et al. (2011) found that sensory expectations
influence the amplitude of the late frontal component, but not
that of the early occipital component. Pitts et al. (2012) found
that the late frontal component disappeared for conscious per-
cepts thatwere not task-associated. Evenwithno task association,
the early occipital component still correlatedwith perceptual con-
sciousness. Koivisto andRevonsuo (2007) found that the late front-
al component interacted with selective attention, whereas the
early occipital component did not. Sandberg et al. (2013) were
able to decode which of 2 rivaling percepts the participant was
conscious of, using only activity at occipital and temporal sources
around 130–320 ms, andactivity from these sourceswasmore pre-
dictive than that at frontal sources at any time point.

Taken together, one set of theories and experimental findings
argue in favorof a dichotomous, late frontal component being the
main correlate of perceptual consciousness, and another set of
theories and experimental findings argue in favor of graded, earl-
ier occipital or occipito-temporal activity. We have previously
suggested that oneway of providing evidence relevant to this de-
bate is to examine the predictive power of the components in
question (Sandberg et al. 2014). Specifically, we have argued
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that the correlate of perceptual consciousness should be at least
as predictive of reports on a perceptual consciousness scale as
any process that is only a prerequisite of perceptual conscious-
ness (which may sometimes lead to perceptual consciousness
and sometimes not) or a potential consequence of conscious-
ness (which may or may not occur consistently every time
perceptual consciousness is present). For this reason, we con-
ducted an MEG study of masked visual identification examining
which spatial and temporal components of the MEG signal were
themost predictive of perceptual consciousness. Specifically, we
examined whether participants reported graded levels of
perceptual consciousness, and whether these levels could
be decoded from the MEG signal using multivariate classifica-
tion algorithms trained and tested on data fromawide set of cor-
tical sources primarily at the time windows of the P3a and the
VAN (N1/N2).

Materials and Methods
Participants

Nineteen right-handed male participants with a normal or
corrected-to-normal vision gave written informed consent
to participate. Their age was 26.6 years on average (range:
21–37 years, SD: 4.4 years). The local ethics committee,

De Videnskabsetiske Komitéer for Region Midtjylland, provided
written confirmation that no ethical approval was required for
the study according to the Danish law, specifically Komitéloven
§7 and §8.1.

One participant misunderstood instructions and did not re-
spond on the identification task when he had no experience of
the target. With 2 other participants, there were problems with
their Head Position Indicator (HPI) coils and head positions
could thus not bemonitored. Two participants reported claustro-
phobic reactions and did not complete the experiment. One par-
ticipant did not use the “Almost Clear Experience” (ACE) rating at
all (see definitions below) and could thus not be included in the
analyses comparing the PAS ratings. Submission of the data to
the MaxFilter (see below) of another participant returned an
error that could not be resolved. Finally, one participant’s con-
trasts were uniformly distributed among all possible contrasts,
indicating that the staircase did not work for him. In summary,
data from 8 participants were thus excluded before analyses.

Stimuli and Procedure

A visual masking paradigm was used (Fig. 1A). Participants were
seated 60 cm from the screen. A Panasonic PT-D10000E projector
was used with a resolution of 1200 × 1024 pixels and a frequency
of 60 Hz. A fixation cross was presented for 500, 1000, or 1500 ms,

Figure 1. Paradigm, stimuli, and behavioral results. (A) Paradigm and stimuli: First, afixation crosswas presented for either 500, 1000, or 1500 ms. Following that, the target

(1 of 2 figures, rectangle or rotated rectangle) was presented for 33.3 ms. This was immediately followed by a static noise mask presented for 2000 ms. During these

2000 ms, participants reported the identity of the target by a button press with one hand. Finally, they indicated the clarity of their experience using the PAS (Table 1).

A contrast staircase, a modified 2-up-1-down, was used throughout the experiment. In the lower left of A are the 2 target stimuli used throughout the experiment. (B)

Definition of lobes: Lobes overlaid on inflated cortex (left hemisphere) of the fsaverage map. A lateral (left) and a medial (right) view is shown with the borders

between the lobes highlighted (C) Behavioral results: Only responses that were within the time limit are plotted. Proportion correct and response times are shown for

the identification task, which have been categorized according to the subsequently reported PAS rating. Mean proportion correct (left) for each PAS rating. Error bars

are 95% confidence intervals. The punctured lines represent chance and ceiling. Response times (right) for each PAS rating with 95% confidence intervals.
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followed by 1 of 2 target rectangles, presented for 33.3 ms
(2 frames), which were rotated 45° relative to each other (size:
1.34 × 1.02° of visual angle; Fig. 1A). Presentation of the target
was followed by a static random noise mask that was presented
for 2000 ms. During these 2000 ms, participants were to identify
the presented figure by a button press on a response box (ID
box). Following the identification of the target, participants
were to rate their conscious experience on the PAS using 1 of 4
categories (Table 1). No Experience (NE): Nothing at all was
seen; Weak Glimpse (WG): A feeling of having seen something,
which cannot be described further; Almost Clear Experience
(ACE): An ambiguous experience of the stimulus, some aspects
are experienced more clearly than others; Clear Experience
(CE): An unambiguous and clear experience. Pressing the upper
button of a second response box (PAS box) enabled participants
to cycle through the 4 categories. The lower button was used to
confirm the selection of the PAS category that the cursor was si-
tuated on. At the beginning of PAS selection, the cursor was not
present on the screen. By the first press of the upper button, it
would appear on the NE category. In the beginning of the experi-
ment, the ID box was the box in the participant’s right hand and
the PAS box the one in the participant’s left hand. In every 36
trials, the functions of the 2 boxes swapped such that the ID
box became the one in the left hand and the PAS box the one in
the right hand or vice versa.

Before participants were tested in the magnetically shielded
room, they completed a short practice session of 32 trials of vary-
ing contrast. The purpose of the session was to accustom partici-
pants to the experimental procedure and to instruct them in how
to use the PAS categories. During the practice session, partici-
pants received feedback about the correctness of their identifica-
tions. Participants were instructed to use “No Experience” (NE)
when they had no conscious experience at all, “Weak Glimpse”
(WG)when they had a conscious experience of a target appearing
on the screen, but with no experience of its features, “Almost
Clear Experience” (ACE) when they had a conscious experience
of a target and some of its features, and “Clear Experience” (CE)
when they had a conscious experience of a target and all of its
features. Extra care was given in instructing participants in the
difference between ACE and CE, because their names are seman-
tically very close to one another. Participantswere given as an ex-
ample of anACE contra a CE the clearerexperiencing of the 2 lines
thatmake up the upper left angle of a rectangle versus the equal-
ly clear experiencing of all 4 lines of a rectangle. All participants
except one had used all categories after the practice session and
reported that the 4 categories were experientially distinguishable
to them. Finally, they were instructed that they were to describe
the clarity of their experiences and not how confident they were
in having made the correct identification.

In themagnetically shielded room, participants went through
1 practice block and 11 experimental blocks, each consisting of

72 trials. Participants received feedback on the identification
task only during the practice trials. Between blocks, participants
were encouraged to rest a little and move their limbs (not their
heads). Furthermore, participants were notified by a message
every 36 trials that the functions of the response boxes changed,
in the manner explained earlier.

Because our planned statistical contrasts included the 4 levels
of PAS ratings, a sufficient amount of responses for each PAS rat-
ing was necessary, and a contrast staircase was therefore used.
All stimuli were white/gray on a black (RGB value of 0, 0, 0) back-
ground. The staircase had 26 contrast levels with the clearest
level equivalent to a contrast of 77% (with 100% equivalent to
an RGB value of 255, 255, 255) and the dimmest level equivalent
to a contrast of 2% (with 0% equivalent to an RGB value of 0, 0,
0). All steps were of 3%. During the practice block and the first ex-
perimental block, 2 successive correct answers on the identifica-
tion task resulted in going 2 levels down the staircase (making the
stimulus dimmer), whereas 1 wrong answer resulted in going
1 level up the staircase (making the stimulus brighter). The con-
trast level was 14% or lower for all participants at the end of the
practice trials. For each experimental block after the first, that is,
blocks 2–11, the staircase adapted based on which PAS rating the
participant had responded the least with throughout the experi-
ment so far. If NE had been used the least number of times during
a block, 3 levels were subtracted after 2 successive correct an-
swers, and only 1 added for a wrong answer. If WG had been
used the least number of times, 2 levels were subtracted and 1
added. For ACE, 1 level was subtracted and 2 added. Finally, for
CE, 1 level was subtracted and 3 added.

Distributed pseudorandomly across the experiment, approxi-
mately 72 “catch trials” containing no stimulus were presented.

Magnetoencephalography

MEG datawere recorded in amagnetically shielded roomwith an
Elekta Neuromag Triux systemwith 102 magnetometers and 204
orthogonal planar gradiometers with a recording frequency of
1000 Hz. Offline, a Maxwell Filter was used to apply spatio-tem-
poral Signal Space Separation (tSSS), which separates the brain
signal from the external disturbances outside the sensor array,
leaving only the brain signal. After applying tSSS, movement
compensation was applied based on continuous HPI measure-
mentswith a step size of 30 ms. tSSS andmovement compensation
were both performed using the MaxFilter, version 2.2 (Elekta). Five
HPI coils were used, one behind each ear, one on the left and
right temples, respectively, and the final one on the forehead.
Head shapewas digitized using a Polhemus Fasttrack Digitizer (Col-
chester, Vermont, USA). Thehead shapeof theparticipantwas later
used to create the forward model for each participant.

Data were analyzed using MNE-python (Gramfort et al. 2013).
The data were bandpass-filtered (0.5–15 Hz, Butterworth) and

Table 1 The Perceptual Awareness Scale (PAS)

Label Description [from Ramsøy and Overgaard (2004)]

(1) No Experience (NE) No impression of the stimulus. All answers are seen as mere guesses.
(2) Weak Glimpse (WG) A feeling that something has been shown. Not characterized by any content, and this cannot be specified

any further.
(3) Almost Clear Experience (ACE) Ambiguous experience of the stimulus. Some stimulus aspects are experiencedmore vividly than others.

A feeling of almost being certain about one’s answer.
(4) Clear Experience (CE) Non-ambiguous experience of the stimulus. No doubt in one’s answer.

Note: Scale steps and their descriptions.
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epoched into epochs of −200 to –600 ms around the target and
downsampled to 250 Hz. The upper boundary of 15 Hz was se-
lected as both components of interest, the VAN and the P3a,
have a frequencyof approximately 7 Hz. Therefore, afilter remov-
ing frequencies above this will generate the greatest statistical
power. Independent component analysis (Hyvärinen and Oja
2000) was used to remove eye blinks and eye movements by re-
moving the component that correlated most with the horizontal
and vertical electrooculograms.

Source Reconstruction

Source reconstruction was done using the minimum norm esti-
mate (MNE) algorithm (Hämäläinen et al. 1993). MNE assumes
minimal prior information, only that the source currents are spa-
tially restricted.We aimed tomodel 8196 sources for each partici-
pant based on participant-specific cortical reconstructions and
volumetric segmentations. The cortical reconstructions were
modeled using FreeSurfer (http://surfer.nmr.mgh.harvard.edu/
[date last accessed; 11 May 2015]; Dale et al. 1999).

Dynamic statistical parametric mapping was used to over-
come the superficial bias of MNE (Dale et al. 2000). We ran a sep-
arate source reconstruction for each of the 3 PAS comparisons.
For each comparison, we used the shared maximum number of
trials for each PAS rating. Because differences in stimuli contrasts
can induce differences in a given NCC (Fisch et al. 2009), we only
used trials with the same contrast level in our tests. Furthermore,
we ensured that there was an equal amount of left-handed and
right-handed responses to prevent the classifier from using
motor activity associated with a perceptual state to classify trials
(Sandberg et al. 2013).

Owing to individual anatomical differences, participants had
different numbers of reconstructed sources in each lobe. The
average amount of modeled sources in each participant was
8194 (min. = 8175, max. = 8196). For the frontal lobe, it was 2490
(min. = 2283, max. 2654); for the occipital lobe, it was 698 (min. =
585, max. = 821); for the parietal lobe, it was 2254 (min. = 2165,
max. 2298); and for the temporal lobe, it was 1426 (min. = 1289,
max. = 1539). The lobes were defined using the Desikan–Killiany
Atlas (Desikan et al. 2006). See Figure 1B for the lobes displayed
on the “fsaverage” template from FreeSurfer.

Multivariate Analyses (Within Participants)

We used a logistic regression classifier (Bishop 2006). We con-
ducted 5 different runs with the classifier per PAS comparison
(NE versus WG, WG versus ACE, and ACE versus CE), one with
all sources included, and one with occipital, temporal, parietal,
and frontal sources separately. The analyseswere runwithin par-
ticipants. We used stratified 5-fold cross-validation to ensure an
equal amount of trials with left- and right-handed responses
in each training set. Only correct trials were included, such
that the influence of performance on decoding accuracy was
minimized.

Thus, classification accuracy was calculated for each source
group for each participant tested. The theoretical chance level
was 50% since there was an equal number of trials for each com-
parison. We used L1-regularization, sparse weighting.

This classification analysis was run for an early range (VAN:
132–320 ms) and for a late range (P3a: 324–512 ms). These ranges
were of equal duration (i.e., the number of temporal features was
controlled) to ensure that they could be compared meaningfully
(Sandberg et al. 2014). We thus specifically tested whether the
early range or the late range was the more informative by

comparing their classification accuracies to one another. For
the 3 PAS comparisons, this resulted in the following median
number of trials per participant: NE versus WG = 24, WG versus
ACE = 34, and ACE versus CE = 30. It should be noted that the
number of trials used in the analysis for a given participant did
not predict classification accuracy (see control analysis reported
in Fig. 5B).

Group-Level Analysis

The main objective of this analysis was to compare frontal and
occipital lobes as to which was the better for classifying percep-
tual consciousness. We investigated this in the VAN time range
and in the P3a time range since both these have been reported
as correlating with perceptual consciousness. This was done for
each of the 3 neighboring PAS comparisons, NE–WG, WG–ACE,
and ACE–CE. More exploratively, the temporal and parietal
lobes and the full brain were also investigated.

Wefittedmodelswith accuracyof the classifier as the depend-
ent variable. Participants weremodeled as having a unique inter-
cept, that is, a random effect. Three fixed effects were of interest:
PAS comparison (3 levels: NE–WG, WG–ACE, and ACE–CE), Lobe
(5 levels: all, frontal, occipital, parietal, and temporal), and
Time Range (2 levels: VAN and P3a; Fig. 3). We performed model
comparisons between models that did or did not include the
fixed effects and their interactions to find the best compromise
between an explanatory and a parsimonious model. This was
done using the log-likelihood ratio between the 2models because
this ratio approximates a χ2 distribution. A χ2 test can thus be
used to assess whether 2 models differ significantly, where the
test statistic is the log-likelihood ratio and the degrees of freedom
is the difference in free parameters of the 2 models.

Results
Behavioral Results

The behavioral results showed differences in accuracy and re-
sponse times for the 4 perceptual ratings. For the behavioral ana-
lyses, all data points were used, despite differences in contrasts.
The analysis was performed to show the relationship between
performance and perceptual clarity.

The proportion correct per PAS rating (4) wasmodeled using a
logistic regressionmodel. Each participant (11)wasmodeledwith
an individual intercept. Comparing thismodel with a null model,
which assigns an identical proportion correct to each PAS rating,
we found that the model including PAS ratings fitted proportion
correct significantly better than the null model, χ2(3) = 1943.3,
P < 0.001. This means that the accuracies differed significantly
across PAS ratings. It can be seen from the confidence intervals
of proportion correct (Fig. 1C) that performance was not signifi-
cantly different from chance when participants reported NE.
For the remaining PAS ratings, performancewas significantly dif-
ferent from chance and different from one another in an ordered
manner, that is, WGACC > NEACC, z = 19.18, P < 0.001; ACEACC >
WGACC, z = 14.21, P < 0.001; and CEACC > ACEACC, z = 2.16, P = 0.031.
CEACC > ACEACC was not significant when Bonferroni-corrected
(3), PBONF = 0.092.

Log response times per PAS rating (4) for the identification
task weremodeled factorially. Each participant (11) wasmodeled
with an individual intercept. Comparing thismodel against a null
model, we found that the model including PAS ratings explained
significantly more than the null model, χ2(3) = 1818.8, P < 0.001.
Response times decreased with clarity of experience: WGRT <
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NERT, z = 2.14, P = 0.032; ACERT <WGRT, z = 23.87, P < 0.001; CERT <
ACERT, z = 11.11, P < 0.001. WGRT <NERT was not significant when
Bonferroni-corrected, PBONF = 0.097. Overall, performance (mea-
sured using accuracy and response time) increased in relation
to the clarity of perceptual consciousness.

The median number of trials per PAS rating used by a partici-
pant was: NE = 183; WG= 150; ACE = 177; CE = 121, indicating that
participants used the scale in a graded manner.

Catch Trials

The median number of times participants used the 4 different
PAS ratings on catch trials was: NE = 61; WG = 11; ACE = 0; and
CE = 0.

This indicates that the sensory characteristics, figure-present
versus figure-absent, correlates well with perceptual characteris-
tics, that is, PAS rating, even though participants occasionally ex-
perienced a WG when no target was presented, indicating that
some visual confabulation took place.

Illustrations of Components Found

We created grand averages for illustration (Fig. 2). In Figure 2A,
the difference topographies for the differing neighboring com-
parisons are seen. In Figure 2B, an example of an ERF is shown
from a temporal magnetometer. As can be seen, the components
behind the VAN difference and the P3a difference are elicited. No
formal statistics were done on these ERFs, since all statisticswere
done in source space using multivariate analyses. Nevertheless,
it can be seen that the 2 components, VAN (130–320 ms) and P3a
(320–510 ms), have comparable mean amplitude differences be-
tween conditions (Fig. 2A), indicating that any difference found
using multivariate statistics reflects the consistency of informa-
tion on the single trial level (Sandberg et al. 2014). The ratios (all
close to 1) between peak differences for the VAN time range and
the P3a time range for the 3 PAS comparisons indicated that they
were indeed comparable. The peak differences over magnet-
ometers were for NE–WG: VAN = 25.2 fT, P3a = 28.4 fT, ratio = 1.12;
WG–ACE: VAN = 29.1 fT, P3a = 27.8 fT, ratio = 1.05; ACE–CE: VAN =
23.9 fT, P3a = 25.5 fT, ratio = 1.07.

Group-Level Analysis of Results From the Multivariate
Decoding

To investigate which spatio-temporal features classified percep-
tual consciousness the best, the 3 effects of interest, PAS com-
parison (3), Lobe (5), and Time Range (2), and their interactions
were modeled and evaluated for significance (the decoding ac-
curacies are plotted in Fig. 3). Models including these effects
were compared against a null model, which modeled accuracy
as a constant. The Time Rangemodel was not significantly differ-
ent from the nullmodel: χ2(1) = 1.1, P = 0.29. The PAS comparisons
and Lobe models were, however, χ2(2) = 38.9, P < 0.001 and χ2(4) =
20.6, P < 0.001. None of the possible interactions between the
fixed effects made a significant difference (for all tests, P > 0.30).
Comparisons of the different levels of Lobe revealed that occipital
sources were significantly better for classification than frontal
sources, z = 4.46, P < 0.001. Occipital sources were also better for
classification than temporal sources, z = 3.81, P < 0.001. These
tests were also significantwhen Bonferroni-corrected for 10 com-
parisons. There was furthermore evidence of occipital sources
classifying significantly better than parietal sources, z = 2.28,
P = 0.023, and all sources together, z = 2.31, P = 0.021. Evidence of
all sources together classifying better than frontal sources was

also found, z = 2.15, P = 0.031. Finally, there was also evidence of
parietal sources classifying better than frontal sources, z = 2.19,
P = 0.029. These 4 comparisons were not significant when
Bonferroni-corrected for multiple comparisons (10).

Comparisons of the different levels of PAS revealed that both
the WG–ACE comparison and the ACE–CE comparison were
more accurate than the NE–WG comparison, z = 5.25, P < 0.001,
and z = 6.11, P < 0.001, respectively. Both survived Bonferroni-
correction for multiple comparisons (3).

Time Courses of the Classification

The analyses above focused on the classification accuracies over
extended time periods. To investigate the earliest time post-
stimulus that perceptual consciousness could be decoded (the
time point atwhich no later information contributed to increased
decoding accuracy), we performed classifications per time point
in a cumulative manner as well (Fig. 4). For these analyses, the
nth analysis included all time points up to and including the
nth time point. The time range was from 200 ms pre-target to
600 ms post-target. With the downsampled frequency of
250 Hz, this resulted in 201 classification analyses being run for
each of the 3 PAS comparisons. Only frontal and occipital lobes
were tested, and all classifications were run within-participant.

The steepest rise in classification accuracy for the occipital
sources (Fig. 4A) occurred in the VAN range, whereas the P3a
range in the frontal sources did not seem to be associated with
any change in classification accuracy (Fig. 4B). Paired t-tests cor-
roborated this: for the occipital lobe, the difference in classifica-
tion accuracy between 320 and 130 ms was significantly
different from zero for all 3 PAS comparisons: NE–WG: t(10) = 3.06,
P = 0.012; WG–ACE: t(10) = 2.97, P = 0.014; ACE–CE: t(10) = 2.67,
P = 0.023, whereas for the frontal lobe the difference in class-
ification accuracy between 510 and 320 ms was not significantly
different from zero for any of the 3 PAS comparisons: NE–
WG: t(10) = 0.45, P = 0.66; WG–ACE: t(10) = 1.74, P = 0.11; ACE–CE:
t(10) =−0.075, P = 0.94.

Comparison Between the 2 Ranges

Themultivariate analyses showed that only the occipital sources
contain information for decoding all 3 PAS comparisons above
chance (Fig. 3), and that only the VAN time range was associated
with a significant increase in classification accuracy (Fig. 4A).
Note that the temporal sources did not classify above chance
for the NE–WG comparison. This fits well with the notion that
temporal sources only start playing a role when the difference
in experience is about content (Goodale and Milner 1992). How-
ever, it might be that all necessary processing takes place in the
occipital lobe (e.g., V4), and that the temporal lobe is not neces-
sary for an experience of content. This is entirely possible, espe-
cially because of evidence that V4 can process complex
information such as shapes (Desimone and Schein 1987).

Analysis of Catch Trials

Six participants had enough catch trials rated NE andWG to do a
classification betweenNE andWG. This number had to be greater
than the number of folds (5). The trials were processed and ana-
lyzed in the same manner as described for the figure-present
trials. Classifications were run for frontal and occipital sources
in the VAN range and the P3a range. A mixed model was fitted
with Lobe (2) and Time Range (2) as fixed effects and Participant
(6) with random intercepts and with accuracy of the classifier as
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the dependent variable. Themodel with Lobe did not explain sig-
nificantly more than a model with just an intercept, χ2(1) = 1.86,
P = 0.17, but a model with Time Range did, χ2(1) = 6.20, P = 0.013.
Adding the interaction between Time Range and Lobe did not ex-
plain significantly more, χ2(2) = 5.47, P = 0.065.

The effect of Time Range was driven by the P3a range, mean
= 0.581, 95% CI [0.502; 0.660], classifying significantly better than
the VAN range, mean = 0.435, 95% CI [0.356; 0.514]. The P3a range
was thus marginally better than chance for classifying percep-
tual state. This was not a planned analysis, and the effect is mar-
ginal, but finding evidence for the P3a range being related to, and
the VAN range unrelated to, illusory perception is interesting in
its own right. An interpretation of this finding is that P3a reflects
accumulation of internal evidence, veracious or not, resulting in
a given report and does not reflect perceptual consciousness
itself (Melloni et al. 2011). We will return to this discussion later.

Difference in Lobe Size

A potential confound of the present analysis is that the tested
lobes differ in regard to the number of reconstructed sources
they each contain. Specifically, it may be expected that given a

fixed number of examples (trials), a very high number of spatial
features (sources) could reduce the ability of the classifier to
find an optimal border in the data to distinguish PAS responses.
To address this potential issue, we trained new classifiers based
on frontal and occipital lobes using 1) various fractions of the
available sources and 2) different numbers of trials. To address
the potential issue of the number of spatial features, we first ran-
domly sampled one-tenth of the available sources for each lobe
and each time range, VAN or P3a, respectively. This was repeated
100 times, each time with a new and independent sample. A
multivariate analysis was run for each sampling, otherwise
using the same parameters as in earlier analyses. This procedure
was also run for the following fractions: two-, three-, four-, five-,
six-, seven-, eight-, and nine-tenths. These analyses were run
within-participant. For each range, VAN and P3a, the mean clas-
sification accuracy across participants was calculated for each
lobe, frontal and occipital (Fig. 5A). We modeled Accuracy with
PAS comparison (3) and Fraction as fixed effects and Participants
(11) modeled as having a random intercept. No correlations were
found between Fraction andAccuracy, and also no interaction be-
tween Fraction and PAS comparison, occipital Fs < 1 and frontal
Fs < 0.01. There seemed to be an effect of PAS comparison, all Fs

Figure 2. Sensor space data. (A) Topographic maps of the grand average differencewaves between the neighboring PAS ratings. (B) Activity recorded at an example sensor

(right temporal magnetometer) showcasing the components elicited, here exemplified by the WG–ACE comparison from the grand average over participants. The VAN

difference (∼270 ms) and the P3a difference (∼440 ms) are both visible. (C) The position of the magnetometer on a participant.
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> 2.95 reflecting the results of the main analysis, but no formal
test was done as this is unrelated to a test of the potential con-
found. Taken together, the analyses thus revealed that the differ-
ence in source number between the lobes could not explain the
results of the main analysis as the multivariate model was indif-
ferent to the fraction of sources used as long as one-tenth ormore
of the sources are used, corresponding to approximately 70 and
approximately 240 spatial features for the occipital and frontal
lobes, respectively. It should be noted that previous studies
have found poor classification accuracy when a very low number
of spatial features (below 20) was used (Haynes and Rees 2005;
Sandberg et al. 2013), but the number of spatial features was sig-
nificantly higher for all analyses in the present study.

Number of Trials Used for Classification

The second potential confound mentioned earlier was that dif-
fering amount of trials were used for the classifications, and
that this could be related to the accuracy of the classification. A
linear regression (Fig. 5B) was run to investigate this relationship
for the occipital sources in the VAN time range, ρ = 0.061, t(31) =
0.34, P = 0.73. The number of trials thus appears to be unrelated
to the accuracy of the classifier.

Physical Characteristics Versus Perceptual
Characteristics

A third potential confound was that some of the within-partici-
pant classification trial sets contained unequal amounts of trials

with the 2 figures, a rectangle and a 45° rotated rectangle. It is
possible that successful classification was based on decoding re-
presentations of physical properties, that is, orientation, rather
than perceived clarity, that is, differences in perceptual con-
sciousness. Therefore, we investigated the correlation between
accuracy of the classification and how unequally the figures
were distributed between the trials of that classification. Two lin-
ear regressions (Fig. 5C) were run for the occipital sources in the-
VAN time range, one with all data points, ρ = 0.21, t(31) = 1.17,
P = 0.25, and one with the rightmost outlier removed, ρ = 0.056,
t(30) = 0.31, P = 0.76. This indicates that there is no relation be-
tween variability of physical characteristics, that is, orientation
of target stimuli, and the ability of the classifier to decode percep-
tual consciousness, that is, PAS ratings.

Discussion
In this study, we examined the neural activity related to becom-
ing conscious of a visual stimulus. We found evidence that the
MEG signal originating in the frontal lobe decoded graded differ-
ences in perceptual consciousness (measured using the PAS) sig-
nificantly worse than the signal originating in the occipital lobe.
Furthermore, the frontal activity could only be used to decode 1
out of the 3 PAS contrasts above chance (Fig. 3), and neither in
the VAN nor P3a time ranges did frontal sources add to the pre-
dictive value of a classification algorithm (Fig. 4). While we
found no mean difference in predictability of activity in the
VAN and P3a range, only occipital sources in the VAN time

Figure 3. Mean classification accuracies for each of the 5 lobes tested for the 3 PAS comparisons for each of the 2 ranges: The VAN range (132–312 ms) and the P3a range

(324–512 ms). NE versusWG is the difference of a subjective experience as such.WG versus ACE is the experiential difference of content. ACE versus CE is the experiential

difference of unambiguity. Of special importance is it that occipital sources can be used to classify all PAS comparisons significantly above chance. The error bars are 95%

confidence intervals tested against chance, bootstrapped using 10 000 simulations, from a mixed model having Time Range (2) and PAS comparison (3), and Lobe (5) as

fixed effects including all possible interactions. Participants (11) were modeled with individual intercepts (random effect).
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range could be used to decode all 3 PAS comparisons (Fig. 3), and
the greatest increase in predictive values was found during the
VAN time range (Fig. 4). These results were unrelated to differ-
ences in the number of sources in the lobes (Fig. 5A), differences
in the number of trials used to train the classifier (Fig. 5B), and dif-
ferences in stimuli proportions (Fig. 5C).

Our results thus indicate that there are neural activations that
systematically differ between experienced differences in percep-
tual consciousness. Taken together with previous behavioral ex-
periments (Overgaard et al. 2006; Sandberg et al. 2010), this study
provides evidence that perceptual consciousness is graded, and
that differences between each gradation are best explained by
the conglomerate activity of the neurons in the occipital lobe
during the VAN time range, 130–320 ms. It should be noted that
in this study, we do not distinguish between gradual/graded
and partial awareness (Kouider et al. 2010), where gradual/
graded awareness can be interpreted as meaning that the entire
conscious percept is either more clear or less clear, whereas the

partial awareness hypothesis states that the individual percep-
tual features are consciously perceived in an all-or-none
manner.

Taken together, these results thus indicate that occipital ac-
tivity seems a more likely candidate for a neural correlate of per-
ceptual consciousness than does prefrontal activation. It should
be noted that other studies (e.g., Sandberg et al. 2013) have found
that other perceptual sources in, for instance, the temporal lobe
are as predictive of conscious perception as occipital sources. It is
likely that this difference is due to differences in stimuli. The
simple stimuli used in the present experiment are expected to
be processed mainly in relatively early visual areas, such as V4
(Pasupathy and Connor 2001). Had we used more complex stim-
uli, for example, tools or visual scenes, temporal sources might
have been equally predictive. It is important to note that differ-
ences in activation patterns in perceptual areas across different
conscious experiences do not, in themselves, imply a role for
frontal areas. Based on the current findings, a likely explanation

Figure 4.Mean cumulative time point classification accuracies (A) for the occipital lobe and (B) for the frontal lobe tested for the 3 PAS comparisons. The light gray indicates

the VAN range (A) and the P3a range (B), respectively. Note that the largest increase in decoding accuracy occurred during the VAN at occipital sources. The darker gray area

indicates 1 SEM. Curves have been smoothed by only plotting every 10th point. These points are based on the mean of the 9 samples that came before them. The SEM is

calculated over 10 points as well.
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is that activity in perceptual areas is the main correlates of con-
scious perception of stimuli processed in those areas.

In HOT (Lau and Rosenthal 2011) and Information Integration
Theory (Tononi 2004), it is proposed that consciousness is asso-
ciated with prefrontal activations. The same is predicted by at
least some versions of GWT (Baars 2005; Dehaene 2014). The pre-
sent finding that sources in the frontal lobe decode differences in
PAS levels significantly worse than those in the occipital lobe is
thus not what one should expect seen from the vantage point
of these theories. Furthermore, activity in the frontal sources
could only be used to decode 1 out of the 3 PAS comparisons
above chance (Fig. 3), and neither in the VAN or P3a time ranges
did frontal sources seem to add a predictive value (Fig. 4B).

In contrast, the results of the experiment are consistent with
theories that associate occipital activationwith differences in per-
ceptual consciousness such as Lamme’s feedback theory (Lamme
2006), associating perceptual consciousness with recurrent pro-
cessing within the occipital and temporal lobes, and the above-
mentioned VAN proposed by Koivisto and Revonsuo (2010).

In the Neural GWT, the occipito-temporal VAN is often asso-
ciated with construction of the percept, and the more frontal
P3a is associated with becoming conscious of that content
(Sergent et al. 2005). This interpretation appears somewhat in-
consistent with the results of two of our main analyses. We
have previously argued (Sandberg et al. 2014) that a prerequisite
of perceptual consciousness (such as the construction of the per-
cept) should not bemore predictive of conscious perception than
the actual correlate of conscious perception. As we found occipi-
tal activity to be more predictive than frontal activity, it thus ap-
pears unlikely that the occipital activity is only a prerequisite,
especially given the similar mean differences between the 2 sig-
nals across the PAS comparisons (Fig. 2A). Additionally, in our
spatio-temporal analyses (Fig. 4), frontal activity appeared com-
pletely unrelated to classification accuracy throughout the time
range. If frontal activity in the P3a time range correlates with
perceptual consciousness, we would instead have expected to
see an increase in classification accuracy (Fig. 4B) around this
time window. These results suggest that frontal activity may be
related to processes typically (but somewhat inconsistently) oc-
curring on trials with reported conscious perception. In an ex-
perimental context, these processes could be report, overt
consideration, or memory consolidation. This interpretation is
consistent with the studiesmentioned in the introduction show-
ing a decrease in the size of the P3a when a perceived stimulus
is not task relevant (Pitts et al. 2012), and when it is expected
(Melloni et al. 2011).

While our study did not provide evidence of a role for frontal
sources, it is nevertheless not possible to conclusively dismiss a
role of the late P3a time range as activity in this time range
was not significantly less predictive than the VAN time range, al-
though occipital sources were driving the accuracy in both
ranges. One argument against the P3a being the key NCC is that
it did not distinguish all PAS ratings as did the VAN (Fig. 3). An-
other argument is that no predictive value was added during
the P3a time range as one might expect (Fig. 4), but proponents
of GWT might argue that this is expected as all information is
present in a preconscious state during the VAN range.

We also found evidence that activity during the P3a time
range classified the NE–WG difference in catch trials better
than that in the VAN time range, and we failed to reject the hy-
pothesis that any cortical lobe performed better than the other.
One interpretation of this finding, opposite to the general gist
of our argument, is that P3a reflects perceptual consciousness
better than VAN since it accounts for this illusory perception

Figure 5. Control analyses: (A) Controlling for lobe size: Classification accuracies for

the occipital lobe and for the frontal lobe collapsed over the 3 PAS comparisons.

Separate lines are plotted for the VAN time range and the P3a range. All slopes

are close to 0, ρmin =−0.00070, ρmax = 0.048, indicating that classification with the

occipital lobe is best not simply because of differences in the number of

reconstructed sources in the multivariate models across lobes. (B) Controlling for

differences in the number of trials used for each classification: Individual

observations, 3 for each participant, 1 for each PAS comparison, showing the

relationship between classification accuracy for the occipital lobe for the VAN

range and the number of trials used for classification. The linear regression line

is drawn, ρ = 0.061. This indicates that the results are not a consequence of

differences in the number of trials used for classification. (C) Controlling for

differences in the number of trials with each stimulus used for classification:

Individual observations showing the relationship between classification accuracy

for the occipital lobe for the VAN time range and the difference between the

number of rectangles and the number of rotated rectangles among the trials

for that classification. Two linear regression lines are drawn, one with all

observations, ρ = 0.21, and one with the rightmost outlying observation

(encircled) removed, ρ = 0.056. This indicates that the results are not a

consequence of differences in physical characteristics of the stimuli.
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difference. However, if this were the case, it is surprising that the
P3a was not more predictive of perceptual consciousness on ver-
idical trials, and it is surprising that frontal sources could not be
used to decode the NE–WG difference on such trials. Frontal
sources in the P3a time range thus appeared to be predictive of
the report of perception only when no stimulus was presented.
For these reasons, an alternative explanation is that the P3a re-
flects differences in the accumulation of internal evidence for
how to map perceptual consciousness onto PAS ratings (Melloni
et al. 2011), and thus not perceptual consciousness itself. Based
on the present experiment, however, it is not possible to con-
clude decisively about this matter.

In the NCC theories mentioned above, consciousness is often
discussed and investigated by contrasting perceptual states di-
chotomously. PAS and other non-dichotomous scales allow for
more options: One interpretation may be that there is more
than one NCC, that is, one NCC per neighboring PAS comparison.
If one maintains that there is only one proper NCC, then one has
to decide on the defining feature of perceptual consciousness:
that something is experienced at all (the difference between NE
and WG), that one can specify the content of the experience
(the difference between WG and ACE), or unambiguousness
(the difference betweenACE and CE). Assuming that for Lamme’s
theory, the defining feature of perceptual consciousness is an
experience of content, it is noteworthy that temporal sources in
the VAN time range can classify both the difference between ACE
andWG and the difference between CE and ACE, providing some
suggestive evidence for the involvement of temporal sources in
the recurrent feedback to occipital sources. The present results
also indicate that whether the dichotomously defining feature
of perceptual consciousness is taken to be the difference between
NE andWG or the difference betweenWG and ACE, there was no
evidence for frontal sources decoding perceptual consciousness
above chance (Fig. 3). It is of course possible that this is a question
of statistical power, but importantly we found positive evidence
for occipital sources classifying significantly better than frontal
sources.

The REFCON model (Overgaard and Mogensen 2014) suggests
that consciousness is related to information integrated in a “situ-
ational algorithmic strategy” (SAS) that is realized by a complex
system of feed-forward and feed-backward mechanisms. Con-
sciousness is seen as gradual, directly related to how integrated
given information is in SAS, determined by its relevance, accord-
ing to top-down expectations and evaluations. Thus, REFCON
would predict that consciousness does not relate directly to one
cortical structure, but rather, the structures that are “set up” in a
given individual to realize particular functions. REFCON would
predict that, in most cases, occipital regions are relatively more
related to weak visual experiences than other cortical regions,
but thatmorebrain regionswill be activated in an increasingly in-
dividual manner as a cascade as more information becomes
available and the stimulus becomes more clearly experienced.
Thus, REFCON does not assume that any correlation to a mental
state is static but rather dynamic and may vary greatly between
individuals. Suchmore theoretical aspects of REFCON arenot dir-
ectly reflected in the results of this experiment. However, its pre-
dictions related to gradual integration, the relatively stronger
involvement of occipital regions for visual consciousness, and
the increasing involvement of other cortical regions seem con-
sistent with the results.

In summary, we found that participants reported differences
in perceptual consciousness in a gradedmanner, and that occipi-
tal sources have the greatest predictive value for decoding
these graded differences in perceptual consciousness, thus

strengthening VAN and occipital lobe recurrent processing theor-
ies. The REFCON model is also compatible with the present re-
sults. In the context of this experiment, frontal activations did
not appear directly related to perceptual consciousness, which
is consistent with studies relating it to differences in, for
example, attention and expectations. Using the Perceptual
Awareness Scale made it possible to distinguish how different
degrees of perceptual consciousness each are related to brain ac-
tivity, highlighting an often neglected conceptual point that one
needs to define a neural correlate of perceptual consciousness in
order to find it—for example, as experience per se (as in the dif-
ference between NE and WG) or the experience of content (as in
the difference between WG and ACE). Using the PAS is a possible
way to approach and explore these different neural correlates of
perceptual consciousness in more detail.
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Abstract
Neural correlates of perceptual consciousness have been examined using primarily the method of 

contrastive analysis in which conscious states are compared with unconscious states. Differences in 

cognitive context, such as differences in task requirements have been seen as confounding factors 

for finding the minimal conditions sufficient for conscious experience. This approach assumes that 

consciousness is independent of the cognitive context, and that there is one proper neural correlate 

of consciousness similar across all confounding differences. In contrast, according to integrative 

approaches in which perceptual consciousness and cognitive context are not considered 

independent, neural correlates of perceptual consciousness are not expected to be uniquely spatio-

temporally localizable, but may differ according to differences in task requirements. In this study, 

we examined whether differences in task requirements give rise to spatio-temporal neural 

differences in when and where different gradations of perceptual consciousness could be discerned 

from one another. Using magnetoencephalography (MEG), we found that occipital activity in 

general predicted perceptual consciousness more accurately than frontal activity, but crucially we 

also found that task requirements changed the latency, with the abstraction level of the task 

influencing when perceptual consciousness could be classified: early on, < 320 ms for a perceptual 

task, and later on,  > 320 ms, for a conceptual task. This points towards an integrative view of 

perception and cognitive context, which has the consequence that one may need to abandon the 

search for one unique spatio-temporal neural correlate of perceptual consciousness.

Keywords: neural correlates of consciousness, perception, magnetoencephalography, classification,

task requirements
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Introduction
The search for the neural correlates of perceptual consciousness has been defined as the search for 

the minimal conditions sufficient for realizing a conscious representation (Chalmers, 2000). Using 

contrastive analyses (Baars, 1988; Crick & Koch, 1990) much research has been done on isolating 

the minimal conditions sufficient for realizing a conscious representation, what we here call 

perceptual consciousness. An important question, often not explicitly addressed, is what it means 

for neural conditions to be minimally sufficient for perceptual consciousness. One possibility is that

there is one uniquely identifiable spatio-temporal pattern of neural activity that is constant across 

differences in task requirements, differences in performance, differences in working memory load 

etc. Seen from this viewpoint, any of these differences would be confounding factors in the search 

for what might be called the proper neural correlates of perceptual consciousness (NCC-proper). A 

second possibility is that the minimally sufficient conditions are dependent on the cognitive context.

Seen from this viewpoint, differences in task requirements, differences in performance, differences 

in working memory etc. are not necessarily confounding factors. They may rather be necessary to 

understand the specifics of the realization of perceptual consciousness. From the first viewpoint, 

consciousness is something that is either attached to a representation or not. If consciousness is 

attached to the representation, even if it be in a graded manner, it should be possible to find unique 

neural correlates of this. These would then be the NCC-proper. From the second viewpoint, 

consciousness is integrated into the representation. If representations differ because of differences in

the cognitive context such as differences in task requirements, then from this viewpoint we should 

also expect differences in the neural correlates of perceptual consciousness. From this viewpoint, 

these neural correlates would be evidence of what might be called an NCC-context. This name 

reflects the integration of cognitive context and perceptual consciousness in the representation. For 

example, if one is counting the number of people in a crowd, there is no need to process each of 

their faces, but if one is looking for a particular person, there is. In these 2 cases, the representations

of the people in the crowd should differ in terms of the extent of face processing, and conscious 
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representation, consequently, is expected to differ as well.

In most studies, it seems that experimenters have been aiming for the NCC-proper. This is evident 

from the much debated distinction between phenomenal consciousness and access consciousness 

(Block, 2005). Phenomenal consciousness is defined as being the subjective experience as such 

whereas access consciousness is the availability of the content of that subjective experience for 

cognitive control and motor control. It is much debated whether this is just a conceptual distinction 

or whether it is also empirically tractable (Block, 2007; Dehaene, Changeux, Naccache, Sackur, & 

Sergent, 2006; Lamme, 2006). Lamme (2006, 2010) argues that phenomenal consciousness is 

demonstrably empirically real, and that in order to find the NCC-proper, we must determine its 

minimal conditions, which he argues to be early (< 300 ms) occipital reentrant activity. Dehaene 

(2014) on the other hand argues that only the study of access consciousness, if there at all be such a 

thing as phenomenal consciousness, is a scientifically reputable endeavour. He argues that late (> 

300 ms) frontal activity reflects the minimal conditions for realizing access consciousness. 

Common to these seemingly conflicting viewpoints is that they both assume that there is one 

underlying NCC-proper. Much of the debate then revolves around whether phenomenal or access 

consciousness is the NCC-proper. Another way to characterize this debate is by the conceptual 

divisions of Aru, Bachmann, Singer & Melloni (2012). They divide the correlates that can be found 

by contrastive analyses into 3 kinds: NCC-prerequisites, NCC-proper and NCC-consequences. 

NCC-prerequisites are enabling conditions that allow for the NCC-proper whereas NCC-

consequences arise because of the cognitive context, such as differences in task requirements and 

attention. In electroencephalographic (EEG) studies using contrastive analysis, differences have 

been found in both an occipito-temporally realized component (~130-320 ms) and a fronto-

parietally realized component (~320-510 ms) (Koivisto & Revonsuo, 2010). Using the terminology 

of Aru et al. (2012), seen from the framework of Dehaene (2014) the occipital activity is an NCC-

prerequisite, what they call perceptual integration (Sergent, Baillet, & Dehaene, 2005), and the 

frontal activity is seen as the NCC-proper. From the framework of Lamme (2006, 2010), it is the 
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other way around, with the occipital activity seen as the NCC-proper and the frontal activity seen as

an NCC-consequence. Again, it is evident that both assume the existence of the NCC-proper.

On the other hand, there has not been many studies on the neural correlates of perceptual 

consciousness where the cognitive context has been manipulated. One interesting study is that of 

Melloni, Schwiedrzik, Müller, Rodriguez & Singer (2011) where they found that differences in top-

down expectations changed the latency of neural correlates of perceptual consciousness. This 

indicates that perception and cognitive context may be integrated into one another. In terms of 

theoretical accounts, some accounts do exist wherein it is proposed that perception and cognitive 

context are integrated. Windey & Cleeremans (2015), for example, argued that whether perceptual 

consciousness takes a graded or an all-or-none form is dependent on the level of experience. Low-

level stimuli such as geometrical shapes are subjectively experienced in a graded manner whereas 

high-level stimuli with semantic content are subjectively experienced in a more dichotomous 

manner (Windey, Gevers, & Cleeremans, 2013; Windey, Vermeiren, Atas, & Cleeremans, 2014). 

From this account, one should thus expect that differences in task requirements should give rise to 

different neural correlates dependent on context (NCC-context). Another account is the REFCON 

account of Overgaard & Mogensen (2014). In this account cognitive context and perceptual 

consciousness are integrated in such a manner that the NCC-context represents the neural 

information that is most relevant to the task at hand given the cognitive context. It is important here 

to emphasize that what neural information is most relevant may change depending on both external,

e.g. task requirements, and internal differences e.g. differences in the clarity of subjective 

experience. That is, the optimal cognitive strategy is dependent on both availability of information 

and the goal associated with interpreting that information. According to REFCON, potential 

differences between tasks should be greatest for the graded ratings. If an experience is crisp and 

clear such that all relevant features can be extracted, any strategy should be available. When an 

experience, on the other hand, is less than perfectly clear, the available strategies may differ 

between tasks due to sub-optimal extraction of features. Thus, according to REFCON, if cognitive 
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strategies differ, neural correlates of perceptual consciousness should also differ.

So far, we thus have 2 incompatible viewpoints of what constitute the minimal conditions for 

realizing perceptual consciousness. One where minimal conditions exclude cognitive context, the 

NCC-proper, and one where minimal conditions include cognitive context, the NCC-context. To test

these viewpoints against one another, we created a paradigm with differences in cognitive context, 

but minimal differences in stimuli. We manipulated the cognitive context by manipulating the task 

requirements. The so-called classification tasks of Posner & Mitchell (1967) are examples of tasks 

that differ in regards of cognitive requirements despite them having similar stimuli. A pair of letters 

is presented and participants have to indicate whether the letters are “same” or “different”. This can 

for example be according to physical identity, e.g. “bb”, or rule identity, e.g. both are vowels. Using

a slightly different vocabulary, we created a perceptual task, corresponding to physical identity, and 

a conceptual task, corresponding to rule identity. We chose the terms perceptual and conceptual to 

illustrate that when judging physical identity, one can rely on one's perceptual system to 

differentiate them, even if one does not know what they symbolize. When judging rule identity, 

however, one has to conceptualize the shown letters as vowels and consonants to be able to perform

the task correctly.

We used the Perceptual Awareness Scale (PAS) (Ramsøy & Overgaard, 2004) to measure perceptual

consciousness. PAS has four ratings, No Experience (NE), Weak Glimpse (WG), Almost Clear 

Experience (ACE) and Clear Experience (CE) (Table 1). The differences between neighbouring 

points can be described as there being a subjective experience at all, (No Experience versus Weak 

Glimpse), there being a subjective experience of content, (Weak Glimpse versus Almost Clear 

Experience) and finally there being a subjective experience of unambiguousness of the content, 

(Almost Clear Experience versus Clear Experience).

The 2 viewpoints, one associated with an NCC-proper and one associated with an NCC-context, 

entailed 2 hypotheses each that we could test. From the view of there existing an NCC-proper, the 

- 6 -



hypotheses are that either the early (< 320 ms) occipital activity, also called the Visual Awareness 

Negativity (VAN) (Koivisto & Revonsuo, 2010), or the late (> 320 ms) frontal activity, the P3a 

(Sergent et al., 2005), correlates with PAS ratings across the 2 tasks. From the view of there existing

NCC-context(s), 2 hypotheses could be formed based on the accounts that we discussed earlier. 

According to the account of Windey & Cleeremans (2015), it can be hypothesized that perceptual 

consciousness is graded for the perceptual task and dichotomous for the conceptual task. According 

to the account of Overgaard & Mogensen (2014), it can be hypothesized that perceptual 

consciousness will be graded, and that potential differences between tasks will be the greatest for 

the graded ratings. This means that there may not be one specific spatio-temporal pattern of activity 

that correlates with perceptual consciousness across tasks.

Table 1: The Perceptual Awareness Scale (PAS)

Label Description (from Ramsøy and Overgaard 2004)

(1) No Experience (NE)
No impression of the stimulus. All answers are seen 
as mere guesses

(2) Weak Glimpse (WG)
A feeling that something has been shown. Not 
characterized by any content, and this cannot be 
specified any further

(3) Almost Clear Experience (ACE)

Ambiguous experience of the stimulus. Some 
stimulus aspects are experienced more vividly than 
others. A feeling of almost being certain about one's 
answer

(4) Clear Experience (CE)
Non-ambiguous experience of the stimulus. No 
doubt in one's answer

Note: Scale steps and their descriptions

To test these hypotheses, magnetoencephalographic recordings with subsequent multivariate 

analyses done on source reconstructed data from the occipital, frontal, temporal and parietal lobes 

were used to investigate the potential differential effects that task requirements may have on 

potential neural correlates of perceptual consciousness, whether they be NCC-proper or NCC-
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context. From a more explorative angle, we also included analyses of source reconstructed data 

from the parietal and temporal lobes since areas in both lobes have been found to be involved in 

processing of letters (Scott, Blank, Rosen, & Wise, 2000; Simon, Mangin, Cohen, Le Bihan, & 

Dehaene, 2002).

Methods

Participants

40 right-handed participants, 18 women and 22 men, with normal or corrected-to-normal vision 

provided written informed consent to participate. The median age was 23 years (range: 20 to 31 

years). The experiment was approved by the local ethics committee, De Videnskabsetiske Komitéer 

for Region Midtjylland.

Two participants were excluded from the study, one because she did not finish the experiment in the

allotted time, and the other because he had remains of metallic dental braces in his mouth.

Stimuli and procedure

Participants were seated 137 cm from a screen onto which a Panasonic PT-D10000E projector 

projected an image with a resolution of 1280 × 800 pixels and a refresh rate of 60 Hz. A fixation 

cross was presented for 1000 ms followed by a delay of 1000 ms (to prevent forward masking), 

which was followed by a pair of letters, the target, presented for 33.3 ms. After the target a mask 

was presented until the participant performed the same/different judgement, which they were 

instructed to do as fast and accurately as possible (Fig. 1). Participants were administered one of 2 

tasks. 19 participants performed the perceptual task, and 19 participants performed the conceptual 

task. Task was determined by participant order with odd numbered participants performing the 

perceptual task and even numbered participants performing the conceptual task. In the perceptual 

task the target letters were defined as “same” if they were identical, e.g. “rr”, and “different” in all 

other cases. For the conceptual task, the target letters were defined as “same” if they were of the 

same type according to whether they were consonants or vowels, e.g. “eu” or “sv”, and “different” 

if they were of opposite types, e.g. “ev”. After the participant had performed a same/different 
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judgement, they were to report perceptual consciousness on the Perceptual Awareness Scale. All 

stimuli were presented using PsychoPy (Peirce, 2009). Participants were administered 800 trials in 

blocks of 100 trials each where 10 trials in each block were catch trials where no stimulus was 

shown. After each block the response hand changed for the “same”/”different” response.

The background was black (RGB value, 0, 0, 0). The fixation cross was white (RGB value, 255, 

255, 255). The colour of the target letters was set based on a thresholding procedure as described 

below, and the height of the letters were 0.75 ° of visual angle and presented with a monospaced 

font  (http://gnome-look.org/content/show.php/DigiTalk-mono+%5Bdigital+clock+font%5D?

content=132902, [date last accessed: 31 July 2015]).

Figure 1: Paradigm: A fixation cross was presented for 1000 ms, followed by a delay of 1000 ms,
to prevent forward masking of the target stimulus. A pair of letters was then presented for 33 ms
immediately followed by a mask that remained on until the participant indicated whether the 2

letters were “same” or “different”. In the perceptual task the target letters were defined as “same” if
they were identical, e.g. “rr”, and “different” in all other cases. For the conceptual task, the target

letters were defined as “same” if they were of the same type according to whether they were
consonants or vowels, e.g. “eu” or “sv”, and “different” if they were of opposite types, e.g. “ev”.

After that participants had to indicate perceptual consciousness by one of 4 ratings, No
Experience, Weak Glimpse, Almost Clear Experience or Clear Experience.
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Before the participants were prepared for the magnetoencephalographic recording, they went 

through a practice session in the magnetically shielded room where the recording was made. This 

practice session consisted of 21 trials of varying contrasts. These trials were done to ascertain that 

participants understood the task they had been assigned.

After having been prepared for the magnetoencephalographic recording, participants went through a

staircase-block that doubly served as practice and for setting a threshold.

Threshold procedure

The target letters were presented in greyscale. All participants started at the grey hue exactly 

between black (RGB value, 0, 0, 0) and white (RGB value, 255, 255, 255). We used a stochastic 

approximation staircase to change the grey hue after each trial (Faes et al., 2007) aiming at a 

proportion correct of 75 % since this was where we expected all 4 PAS ratings to be represented 

(Sandberg, Bibby, Timmermans, Cleeremans, & Overgaard, 2011). The thresholded contrast was 

held constant after this staircase-block.

Behavioural analyses

We used mixed models to model the proportion correct and response times of participants.

Magnetoencephalography (MEG)

Before the magnetoencephalographic recording we fastened 4 head position indicator coils (HPI-

coils) on the participants, one behind each ear and one on the left and right temples respectively. 

Head shape and positions of the HPI-coils were digitized using a Polhemus Fasttrack Digitizer 

(Colchester, Vermont, USA). The coordinate system of this digitization was based on the nasion and

the left and right pre-auricular points of the participants. The individual head shapes of participants 

were later used to create forward models for each participant individually. We also recorded 

horizontal and vertical electrooculographic data and electrocardiographic data.

MEG data were recorded in a magnetically shielded room with an Elekta Neuromag Triux system 

with 102 magnetometers and 204 orthogonal planar gradiometers with a recording frequency of 
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1000 Hz. Offline, a Maxwell filter was used to apply spatiotemporal signal space separation (tSSS), 

which estimates the signals originating inside the sensor array, the disturbances arising outside the 

array, and noise/artefacts located close to the sensors and subsequently suppresses the latter two. 

After applying tSSS, movement compensation was applied based on the continuous HPI 

measurements with a step size of 30 ms. tSSS and movement compensation were both performed 

using MaxFilter (version 2.2, Elekta).

Subsequently, data were analysed using MNE-python (Gramfort et al., 2013). The data were 

bandpass filtered using an infinite impulse response filter (1-15 Hz) and separated into epochs with 

an interval of [-200; 600] ms around target onset time and subsequently downsampled to 250 Hz. 

Epochs were rejected if the response of any magnetometer was greater than 4 pT or the response of 

any gradiometer was greater than 400 pT/m. Independent component analysis (Hyvärinen & Oja, 

2000) was used to remove eye blinks, eye movements and heart beats by removing the component 

that correlated most with horizontal and vertical electrooculograms and the electrocardiogram 

respectively.

Source reconstruction

Source reconstruction was done using the minimum norm estimate algorithm (MNE) (Hämäläinen, 

Hari, Ilmoniemi, Knuutila, & Lounasmaa, 1993). MNE assumes minimal prior information, namely 

only that source currents are spatially restricted. Source reconstructions were done for each 

participant based on participant-specific cortical reconstructions and volumetric segmentations 

modelled using FreeSurfer (http://surfer.nmr.mgh.harvard.edu/) (Dale, Fischl, & Sereno, 1999).

Dynamic statistical parametric mapping was used to overcome the superficial bias of MNE (Dale et 

al., 2000). Furthermore, the occipital, frontal, temporal and parietal sources were defined as those 

reconstructed to the occipital, frontal, temporal and parietal lobes as defined by the Desikan-

Killiany Atlas (Desikan et al., 2006).
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Characteristics of the classifiers

Based on the source reconstructions, we tested whether trials that only differed on how perceptual 

consciousness was subjectively rated using PAS could statistically be told apart. We used 

multinomial logistic regression (Bishop, 2006) to classify perceptual consciousness, the 4 PAS 

ratings. The input to the classifier was either the reconstructed time courses of occipital, frontal, 

temporal or parietal sources. Half the trials were right-handed responses and the other half were 

left-handed responses such that motor activity would not bias the classifier. We used stratified 5-

fold cross-validation. Separate classification analyses were run for an early range (VAN: 132-320 

ms) and for a late range (P3a: 324-512 ms). Importantly, these ranges were of equal duration and 

thus included equal numbers of temporal features. This secures unbiased comparisons of the ranges 

(Sandberg, Andersen, & Overgaard, 2014). We used grid search to find the optimal regularization 

parameters. These analyses were run within-participant. We ran 2 types of analyses on the source 

reconstructed data, explicated below.

Number of trials

Only participants that had at least 30 trials of each PAS rating were admitted to the analysis. This 

criterion was conservative and excluded 28 of our 38 participants, and made 4 remain from the 

conceptual task and 6 from the perceptual task. Setting the number of trials to 20 did not increase 

the number of participants in the conceptual task. Since the planned analyses were multinomial with

4 categories, we judged that we could not go lower on trials without this resulting in bad model fits. 

Thus, despite the low number of participants we chose to go with 30 trials since this should result in

better model fits.

Time sample analysis

We ran multinomial analyses for each of the 201 time samples, -200 ms to 600 ms, where we tested 

how classification accuracy evolved over time, but also how the 4 different ratings were mistaken 

for one another. This was done for each of the 4 lobes, occipital, frontal, temporal and parietal.
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Range analysis

For each participant a multinomial logistic classification analysis was run 8 times total, one for each

of the combinations of Time Range (2 levels: VAN; P3a) and Lobe (4 levels: occipital; frontal; 

temporal; parietal). We used mixed models to model the probability for the classifier to label a trial 

as any of the 4 PAS ratings across participants. The probability for each label was modelled as 

dependent on 5 fixed effects and their interactions: Time Range (2 levels: VAN; P3a), Task (2 

levels: perceptual; conceptual), Lobe (4 levels: occipital; frontal; temporal; parietal), Actual PAS (4 

levels: No Experience Weak Glimpse; Almost Clear Experience; Clear Experience) and Classified 

PAS (4 levels: No Experience; Weak Glimpse; Almost Clear Experience; Clear Experience).

Results

Behavioural performance

We created mixed models testing how the proportion of correct responses and response times were 

dependent on PAS rating and Task. Accuracy was modelled as a binomial parameter (Fig. 2A). As 

fixed effects, we included PAS rating (4 levels: No Experience; Weak Glimpse; Almost Clear 

Experience; Clear Experience), Task (2 levels: perceptual; conceptual), and the interaction between 

them. Individual intercepts were modelled for each Participant (38). The interaction could not be 

dropped without a significant change in log likelihood, χ2(38) = 82.0, p < 0.001. The interaction 

between Task and PAS rating was driven by a significantly higher accuracy for Weak Glimpses, 

Almost Clear Experiences, and Clear Experiences for participants doing the perceptual task 

compared to participants doing the conceptual task, Weak Glimpse: z = 2.69, p = 0.0072; Almost 

Clear Experience: z = 5.56, p < 0.001; Clear Experience: z = 4.81, p < 0.001. There was no 

significant difference between tasks when participants reported No Experience: z = 0.74, p = 0.46.

In both tasks, accuracy increased significantly with perceptual clarity. In the perceptual task: Weak 

Glimpse versus No Experience: z = 11.1, p < 0.001; Almost Clear Experience versus Weak 

Glimpse: z = 19.5, p < 0.001; Clear Experience versus Almost Clear Experience: z = 10.6, p < 

0.001. In the conceptual task: Weak Glimpse versus No Experience: z = 6.35, p < 0.001; Almost 
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Clear Experience versus Weak Glimpse: z = 17.5, p < 0.001; Clear Experience versus Almost Clear 

Experience: z = 15.4, p < 0.001.

Response times were log-transformed and modelled factorially (Fig. 2B). The fixed and random 

effects were the same as in the accuracy model. Again, the interaction between Task and PAS 

ratings could not be dropped without a significant change in log-likelihood, χ2(3) = 315.8, p < 

0.001.

The interaction was driven by slower response times in the conceptual task for PAS ratings: Weak 

Glimpse: z = -3.61, p < 0.001; Almost Clear Experience: z = -4.25, p < 0.001; Clear Experience: z = 

-2.94, p = 0.0032. There was no significant difference for No Experience: z = 0.13, p = 0.90.

Figure 2: Behavioural results: (A) accuracy increased as a function of rated perceptual clarity. A
significant interaction and subsequent paired tests indicated that Weak Glimpses (WG), Almost

Clear Experiences (ACE) and Clear Experiences (CE) were more accurate in the perceptual task
compared to the conceptual task. Error bars are 95 % confidence intervals. (B) response times

decreased from Weak Glimpse to Almost Clear Experience to Clear Experience across the 2 tasks.
For these 3 ratings, participants were faster on the perceptual task than on the conceptual task.

Error bars are 95 % confidence intervals. No significant differences in response times or accuracy
was found for No Experiences between tasks.

For the perceptual task, response times decreased with increasing PAS ratings: Weak Glimpse 
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versus No Experience: z = -8.69, p < 0.001; Almost Clear Experience versus Weak Glimpse: z = 

-19.5, p < 0.001; Clear Experience versus Almost Clear Experience: z = -11.4, p < 0.001. For the 

conceptual task, however, there was an increase of response times when going from No Experience 

to Weak Glimpse, z = 12.2, p < 0.001. Thereafter, response times decreased with increasing PAS 

ratings: Almost Clear Experience versus Weak Glimpse: z = -15.0, p < 0.001; Clear Experience 

versus Almost Clear Experience: z = -21.2, p < 0.001. A possible interpretation of this pattern for 

the conceptual task is that random guessing, which subjectively speaking is what subjects do when 

they rate a trial as No Experience, should take equally long for both the conceptual and the 

perceptual task. Please note that these analyses included all 38 participants since the behavioural 

analyses could be performed independently of whether there were 30 trials available.

Catch trials

The median number of catch trials for each PAS rating was as follows. For the perceptual task: No 

Experience = 71, Weak Glimpse = 8, Almost Clear Experience = 0, Clear Experience = 0. For the 

conceptual task: No Experience = 74, Weak Glimpse = 2, Almost Clear Experience = 0, Clear 

Experience = 0. This supports that participants were using the scale in the intended manner.

Illustration of event-related fields

We found that our tasks elicited components in the VAN range and the P3a range indicating that our

paradigm had worked as intended (Fig. 3A) (Koivisto & Revonsuo, 2010).

Time sample analysis

We did a classification per time sample in the epoch period. Means were taken across participants 

for each time sample for occipital sources (Fig. 4), frontal sources (Fig. 5), temporal sources (Sup. 

Fig. 1) and parietal sources (Sup. Fig. 2).

Looking at the occipital sources first, we found for the perceptual task that the period up to (~ 130 

ms) and around the peak of VAN (~ 270 ms) (Fig. 4E-H) saw a steep rise in classification accuracy. 

Thereafter, classification accuracy started declining. This mirrored the finding that perceptual 
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consciousness is graded, and that occipital sources during the VAN time range correlates with 

ratings of perceptual consciousness (Andersen, Pedersen, Sandberg, & Overgaard, 2015). When 

Weak Glimpses were misclassified, it was mostly as No Experiences, and Almost Clear Experiences

were mostly misclassified as Clear Experiences.

Figure 3: A) An example of an MEG response: grand average over 10 participants. Graded
differences are visible in the Visual Awareness Negativity Range (130-320 ms), and a less graded

difference is present around the P3a (~430 ms). B) The positions of magnetometers and
gradiometers around the head of an example participant. Encircled is the magnetometer shown in

A.

For the conceptual task (Fig. 4A-D), we found that only No Experiences and Clear Experiences 

could be clearly separated from the others during the VAN time range. Almost Clear Experiences 

became more separated from the others during the P3a time range, while Weak Glimpses only 

showed one narrow peak around 300 ms. It thus seems that the conceptual task resulted in a more 

dichotomous pattern where Weak Glimpses and Almost Clear Experiences were not separable from 

the other ratings judging from the sample-by-sample occipital activity during the VAN time range. 

An interesting thing to notice is that classification accuracy was sustained during the P3a time range

for the conceptual task, which it was not in the perceptual task. This might indicate further 

processing of the stimuli required for assessing the vowel-/consonanthood of the presented stimuli 

with graded experiences.
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Figure 4: Sample-by-sample analyses for occipital sources: the upper row of panels (A-D) shows
conceptual sources classification for No Experience (NE), Weak Glimpse (WG), Almost Clear

Experience (ACE) and Clear Experience (CE) respectively. The lower row of panels (E-H) shows
the same for the perceptual task. Mean classification accuracies across participants, smoothed by

taking every 10th sample and taking the mean across that sample and the 10 samples on each
side, are shown for all classifications. Shaded regions are standard errors of the mean smoothed

the same way. The 2 bars at the top indicate the width of the 2 time ranges tested in other
analyses. Vertical lines indicate 170 ms and 270 ms respectively.

We then investigated the frontal sources (Fig 5.)
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Figure 5: Sample-by-sample analyses for frontal sources: the upper row of panels (A-D) shows
conceptual sources classification for No Experience (NE), Weak Glimpse (WG), Almost Clear

Experience (ACE) and Clear Experience (CE) respectively. The lower row of panels (E-H) shows
the same for the perceptual task. Mean classification accuracies across participants, smoothed by

taking every 10th sample and taking the mean across that sample and the 10 samples on each
side, are shown for all classifications. Shaded regions are standard errors of the mean smoothed

the same way. The 2 bars at the top indicate the width of the 2 time ranges tested in other
analyses. Vertical lines indicate 300 ms and 436 ms respectively.

We found that for the perceptual task (Fig. 5E-H), classification accuracies for No Experiences, 

Weak Glimpses and Almost Clear Experiences all peaked around ~ 300 ms probably reflecting the 

N3, which Sergent et al. (2005) reported to be fronto-temporally realized and bimodal.
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After ~ 300 ms, classification accuracies started declining for these 3 ratings. Clear Experiences, 

however, peaked around ~ 430 ms, probably reflecting the P3a (Koivisto & Revonsuo, 2010; 

Sergent et al., 2005). Around the P3a peak, Weak Glimpses and Almost Clear Experiences could not

be told apart from the other ratings.

In the conceptual task (Fig. 5A-D), only No Experiences and Clear Experiences peaked around the 

N3 showing the bimodal character that Sergent et al. (2005) reported. Their task required 

conceptualization of the letters. We thus found a bimodal pattern in the conceptual task, but a more 

graded pattern in the perceptual, thus it seems probable that the bimodal character they reported is 

due to the conceptual character of their task.

The temporal and parietal time courses were very similar with classification accuracies for the 

perceptual task rising and peaking for all PAS ratings in the VAN time range and the conceptual 

task only able to classify the extreme ratings accurately during the VAN Range (Sup. Figs. 1 & 2)

Range Analysis

In this analysis, all 4 categories of PAS (No Experience; Weak Glimpse; Almost Clear Experience; 

Clear Experience) were tested against one another based on the conglomerate activity from 2 

predefined ranges (Andersen et al., 2015). We investigated the confusion matrices. A confusion 

matrix has a row and a column for each label classified, one for each PAS rating. One dimension 

represents the actual categories and the other dimension represents what they were classified as. 

The sum of the matrix is 120 (30 trials × 4 PAS ratings). Counts on the diagonal are correctly 

classified trials. With a multinomial analysis, it is possible to test if there is any pattern in how trials

are misclassified. They might provide evidence for whether perceptual consciousness is graded or 

dichotomous. We fitted a mixed model based on 5 fixed effects: Time Range (2 levels: VAN; P3a), 

Task (2 levels: perceptual; conceptual), Lobe (4 levels: occipital; frontal; temporal; parietal), Actual 

PAS (4 levels: No Experience; Weak Glimpse; Almost Clear Experience; Clear Experience) and 

Classified PAS (4 levels: No Experience; Weak Glimpse; Almost Clear Experience; Clear 
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Experience) with a random intercept for each Participant (10) and a random effect, Classified PAS, 

whose addition to the model resulted in a significant change in log-likelihood: χ2(9) = 52.6, p < 

0.001. The 4 remaining effects did not: Time Range: χ2(2) = 0.00, p = 1.0; Lobe: χ2(9) = 0.00, p = 

1.0; Actual PAS: χ2(9) = 0.00, p = 1.0; Task: χ2(2) = 0.00, p = 1.0. Among the fixed effects, the 4-

way interaction Time Range × Task × Actual PAS × Classified PAS could not be removed without a 

significant change in log-likelihood, χ2(9) = 19.8, p = 0.019, and neither could the 3-way interaction

Lobe × Actual PAS × Classified PAS, χ2(27) = 75.0, p < 0.001 (see Appendix A for the full analysis 

of the model). 

We investigated these 2 interactions further, but restricted the analyses to the proportion of correct 

trials (for the full model, see Figs. 7 & 8).

The Lobe interaction revealed 5 significant effects of the 24 tested comparisons (6 for each PAS 

rating: Fig. 6A: see Appendix B for a table of all the tests) and was driven by significant differences

within No Experiences, Almost Clear Experiences and Clear Experiences. No significant 

differences were found for Weak Glimpses. For No Experiences, occipital sources were more 

predictive than frontal sources, z =  2.37, p = 0.018, and so were parietal sources, z = 2.54, p = 

0.011. For Almost Clear Experiences, parietal sources were more predictive than temporal sources, 

z = 2.31, p = 0.021. For Clear Experiences, occipital sources were more predictive than frontal 

sources, z = 2.48, p = 0.013, and were more predictive than temporal sources, z = 3.12, p = 0.0018. 

Extreme awareness ratings, No Experiences and Clear Experiences, were thus classified more 

accurately by occipital sources than by frontal sources. No significant differences were found, 

however, for graded ratings, Weak Glimpses and Almost Clear Experiences (Fig. 6A).

The Time Range × Task interaction revealed 8 significant effects of the 24 tested comparisons (6 for

each PAS rating: Fig. 6B: see Appendix C for a table of all the tests). For No Experiences, the P3a 

time range was more predictive in the conceptual task than in the perceptual task, z = 2.00, p = 

0.045. For Weak Glimpses in the perceptual task, the VAN time range was more predictive than all 
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other combinations of Task and Time Range: Conceptual VAN, z = 2.31, p = 0.021; Perceptual P3a, 

z = 2.42, p = 0.015; Conceptual P3a, z = 2.52, p = 0.012. Compared to Almost Clear Experiences in 

the VAN time range for the conceptual task, all remaining combinations of Task and Time Range 

were significantly more predictive, Perceptual VAN, z = 3.27, p = 0.0011; Perceptual P3a, z = 3.37, 

p < 0.001; Conceptual P3a, z = 2.13, p = 0.033. For Clear Experiences in the P3a time range, the 

perceptual task was significantly more predictive than the conceptual task, z = 2.07, p = 0.038 (Fig. 

6B).

Figure 6: Illustration of the effects that Lobe and the Time Range × Task interaction had on
classification accuracy. For extreme ratings, NE and CE, occipital sources were found to be

significantly more accurate than frontal sources, whereas the interaction between time range and
task was driven by graded ratings, WG and ACE, being affected differently by the 2 tasks

administered. Error bars are 95 % confidence intervals.

This concurs with the impression from the sample-by-sample analyses, namely that the greatest 

differences between tasks were in the graded ratings, Weak Glimpses and Almost Clear 

Experiences. Weak Glimpses were dependent on early activity for successful classification, and this 

was only possible in the perceptual task. We thus found evidence of a dissociation for tasks and for 
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time ranges. We also found a dissociation between tasks and time ranges for Almost Clear 

Experiences, namely a greater dependence on late activity for successful classification, but crucially

so only in the conceptual task.

Having investigated what was driving the differences in classification accuracy, we investigated the 

estimates for the full model looking at both classification accuracy and how often a PAS rating was 

confused for another (Fig. 7). To interpret to which degree each PAS rating could be discerned from

the other 3 possible ratings, we tested whether classification accuracy was significantly different 

from the misclassification probability for each PAS rating (Fig. 8). The motivation for investigating 

the full model was that the statistical analyses showed that all 5 fixed effects had an effect, thus the 

full model might reveal more about the individual classification accuracy estimates and could be 

used to ascertain whether or not perceptual consciousness was graded.

Looking at the occipital sources, first, we saw that during the VAN time range, all 4 PAS ratings 

could be classified above chance in the perceptual task (Figs. 7A & 8A). In general, a graded pattern

was found during the VAN time range (Fig. 7A) where all ratings could be classified above chance 

and to a high degree could be discerned from one another (Figs. 8A & 8E)

For the conceptual task, the VAN time range could only classify No Experiences and Clear 

Experiences above chance (Fig. 7I). The P3a time range (Fig. 7M), however, could classify all PAS 

ratings above chance, and PAS ratings were less confused with one another (Figs. 8I & 8M). Thus, a

dichotomous pattern was found during the VAN time range, but a graded pattern was found during 

the P3a time range. The graded pattern thus seemed to move from the VAN time range to the P3a 

time range between the 2 tasks.

Looking at the frontal sources, then, we found that during the VAN time range (Figs. 7B & 8B) for 

the perceptual task that the graded ratings, Weak Glimpses and Almost Clear Experiences, could be 

classified above chance probably peaking at a graded N3 (~ 300 ms) (Fig. 5F-G). The P3a time 

range (Fig. 7F), however, could classify only Almost Clear Experiences and Clear Experiences 
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above chance.

For the conceptual task, the frontal sources could not classify anything above chance during the 

VAN time range (Fig. 7J), and during the P3a time range (Fig. 7N), only Almost Clear Experiences 

were classified above chance, while the other ratings were mostly confused for one another. Thus, 

frontal sources were surprisingly best for graded ratings in the perceptual task.

Figure 7: Multinomial classifications for all combinations of time ranges (VAN: Visual Awareness
Negativity and P3a), tasks (PC: perceptual and CC: conceptual) and lobes (Occ: occipital; Fron:
frontal; Tem = temporal; Par = parietal). For each PAS rating, the probability of classifying that

rating as any of the 4 PAS ratings is shown. Error bars are 95 % confidence intervals.

For the parietal sources, in the perceptual task all 4 PAS ratings could be classified above chance in 

the VAN time range, thus showing a graded pattern (Fig. 7C). The frontal sources do thus seem less 

apt for classifying graded perceptual consciousness than both occipital and parietal sources as the 

interactions found suggested (Fig. 6A).

In the conceptual task, only the extreme ratings, No Experiences and Clear Experiences, could be 

classified above chance (Fig. 7K) in the VAN time range and only No Experiences in the P3a time 
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range. The graded pattern from the perceptual task thus seemed to become a more dichotomous 

pattern in the conceptual task.

Figure 8: Plots showing for each PAS rating (x-axis) whether they could be significantly be told
apart from from the other ratings (column on y-axis) indicated by the heat colours. White bars show

whether the PAS rating could be classified above the theoretical chance level (25 %).

For the temporal sources, in the perceptual task the graded ratings, Weak Glimpses and Almost 

Clear Experiences, could be classified during the VAN time range, but not during the P3a time 

range. In the conceptual task, only No Experiences were classified above chance. The temporal 

sources do thus seem less apt for classifying graded perceptual consciousness than occipital and 

parietal sources as the interactions found suggested (Fig. 6A).
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In general the full model, showed, as the interaction effects revealed (Fig. 6A), how occipital 

sources, in terms of being above chance for all gradations of perceptual consciousness, were more 

predictive of PAS ratings than frontal sources and temporal sources. The interaction effect between 

Task and Time Range (Fig. 6B) was also clearly visible in the perceptual task being associated with 

higher classification accuracies for the graded ratings, Weak Glimpses and Almost Clear 

Experiences, than the conceptual task.

The overall picture of these multinomial analyses is that the differences in task requirements 

induced differences in when and where perceptual consciousness could be classified. Most notable 

were the differences in how classification accuracies for the graded ratings, Weak Glimpses and 

Almost Clear Experiences, differed between tasks, and how occipital sources were superior to 

frontal sources on the extreme ratings, No Experiences and Clear Experiences. More specifically 

how will be discussed below.

Discussion
The behavioural results revealed, despite our efforts to control the performance levels, that 

participants in the conceptual task performed significantly worse than participants in the perceptual 

task in terms of accuracy. Crucially, this was only for Weak Glimpses, Almost Clear Experiences 

and Clear Experiences. Thus, there were no significant difference when participants rated No 

Experience. For Weak Glimpses and above, above-chance performance was found for both tasks 

(Fig 2A). The above-chance performance for Weak Glimpses is evidence for participants being able

to code letters into vowels and consonants even when they report having no experience of the 

content. The distributions of response times showed an interesting pattern. In the perceptual task, 

there was an approximately linear decrease of response times as perceptual ratings increased. For 

the conceptual task, however, there was only an approximately linear decrease from Weak Glimpses

to Clear Experiences (Fig. 2B). The response times for No Experiences were very similar between 

the 2 tasks and were actually faster than the Weak Glimpses in the conceptual task. The similarity of

these responses may reflect the cognition that is involved in assessing that no information is present 
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and that a random response must be given. It seems reasonable to assume that the cognition for both

tasks span the same temporal timeline when no information is present to operate on. From this view 

it is coincidental that No Experiences appear to be part of a linear decrease in the perceptual task. 

The increase in response time from No Experience to Weak Glimpse in the conceptual task thus 

makes sense if one assumes that uninformed guesses, No Experiences, undergo different kinds of 

processes, which are independent of task requirements, than informed guesses, Weak Glimpses and 

above, which are dependent on task requirements. If this interpretation is correct, we thus should 

expect that neural processing of No Experiences should not differ much between tasks. We will 

return to this point later.

The multinomial analyses (Figs. 4, 5 & 6) indicated that there was no unique spatio-temporal 

correlate of perceptual consciousness across differences in task requirements. Judging from the 

perceptual task only, occipital sources in the VAN time range could predict all 4 PAS ratings, as we 

have found earlier in a perceptual task, (Andersen et al., 2015) (Figs. 7A & 8A) whereas this 

predictive capability had moved to the P3a time range for the conceptual task (Figs. 7M & 8M). 

This speaks against occipital activity during either time range exclusively being an NCC-proper. 

The same goes for frontal activity, which could not differentiate all 4 PAS ratings from chance in 

any of the tasks or time ranges (Figs. 7B, F, J, & N). Thus our results are not as would be 

hypothesized from the viewpoint of there existing an NCC-proper, where cognitive context and 

perceptual consciousness are seen as not interacting. On the other hand, these results are compatible

with such an interaction between cognitive context and perceptual consciousness. The cognitive 

context, most notably, influenced how predictive the VAN time range was for graded ratings (Fig. 

6B). Initially, the hypothesis based on the account of Windey & Cleeremans (2015) that the 

perceptual task would result in graded perceptual consciousness and that the conceptual task would 

result in dichotomous perceptual consciousness seems to be corroborated. During the VAN time 

range, we found that all 4 PAS ratings could be distinguished in the perceptual task by occipital 

sources, which is evidence of gradedness (Fig. 7A), and that only No Experiences and Clear 
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Experiences could be told apart in the conceptual task, which might be taken as evidence of 

dichotomousness (Fig. 7I). Even in the conceptual task, however, there was evidence of occipital 

sources being capable of telling all 4 PAS ratings apart; this capability had just moved to the P3a 

time range (Fig. 7M & 8M). The account of Windey & Cleeremans (2015) offers no immediate 

explanation of this finding.

The hypothesis made based on the REFCON account (Overgaard & Mogensen, 2014) that 

perceptual consciousness would be graded and that the greatest differences between tasks would be 

found for graded differences can be interpreted as corroborated by these findings (Figs. 7A & 7M). 

The question is then why there should be in a shift in latency for when perceptual consciousness 

could be classified in a graded manner across tasks. According to REFCON, the cognitive strategies

available depend on both availability of information, as measured by PAS, and the cognitive context

associated with interpreting that information, as manipulated by the task requirements. So an 

answer as to why we found latency differences could be that the cognitive strategies available in the

conceptual task for less than perfect information, that is for Weak Glimpses and Almost Clear 

Experiences, are different than the strategies available for the perceptual task. Not only the latency 

differences between tasks for the occipital sources may be a consequence of differences in cognitive

strategies, also the differences in accuracy between tasks for frontal sources during the VAN time 

range peaking at N3 (~300 ms) may be reflecting differences in cognitive strategies available. For 

the perceptual task, there was evidence that frontal sources could classify PAS ratings in a graded 

manner (Figs. 5 E-H & 6B) whereas this ability was absent in the conceptual task. There is evidence

that N3 reflects object processing and categorization but not the semantics associated with letters 

whereas later activity (~ 400 ms) has been associated with the extraction of semantics (Eddy, 

Schmid, & Holcomb, 2006; Hamm, Johnson, & Kirk, 2002; McPherson & Holcomb, 1999). The 

information processing reflected by N3 may be sufficient for performing the perceptual task above 

chance, and therefore according to REFCON, it is not surprising to see this correlating with 

differences in perceptual consciousness since this activity is directly relevant to behavioural goals in
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terms of task requirements. In contrast, the N3 activity will not be sufficient for performing the 

conceptual task above chance since the semantics, i.e. vowelhood and consonanthood, needs to be 

extracted. Interestingly, we also found that the Clear Experiences did not reach peak classification 

accuracy in the perceptual task until 436 ms (Fig. 5H). This might seem surprising because one 

might believe that this should mirror the patterns from the graded ratings. For graded ratings, the 

optimal strategy might be one of comparing shapes, (N3), but for a Clear Experience, this strategy 

might be backed by up a more explicit comparison of the letters, e.g. a conscious assessment of 

seeing letters, say, 2 a's or an e and a c, not just about the similarity of shapes. The peak of 436 ms 

also coincides with P3a peak thought by Dehaene (2014) to signify entry into a global workspace. 

Our findings are thus compatible with a theory of a global neural workspace, but importantly such a

theory would only be able to explain a subset of the phenomena observed, namely those for Clear 

Experiences, which are the only ones that show the P3a peak, but not for what we observed for the 

graded ratings. Proponents of a global workspace theory could bite the bullet and insist that only 

Clear Experiences are truly conscious and thus maintain a dichotomous view of perceptual 

consciousness. This would, however, mean that the dividing point between a conscious and an 

unconscious experience would be whether or not stimuli were unambiguously seen, not whether or 

not there was an experience of content (Table 1), which does not seem to be what most people have 

in mind when discussing perceptual consciousness (Chalmers, 1997; Dehaene, 2014; Lamme, 

2006). 

 We believe that these findings taken together support a view of neural correlates of perceptual 

consciousness where cognitive context has to be taken into account, thus we cannot expect an NCC-

proper, but must settle for an NCC-context. Our results furthermore suggest that in general (Fig. 

6A), occipital and parietal sources predict perceptual consciousness better than frontal sources, that 

is for the extreme ratings, and that perceptual consciousness is graded such as was hypothesized 

based on the REFCON account.

Thus the general hypothesis that perceptual consciousness is graded and that cognitive context is 
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integrated into perceptual consciousness, as predicted by REFCON, is compatible with these 

findings. Below, we explore how the interactions between time ranges and tasks may be explained 

in terms of REFCON.

First, the finding that the Weak Glimpses are best classified in the perceptual task by the VAN time 

range indicates that the cognitive strategy applied is more consistent (Sandberg et al., 2014) in 

terms of a spatio-temporal neural pattern than in the conceptual task. Furthermore, it was also more 

consistent than any pattern in the P3a time range. One interpretation of this may be that it is 

feedforward activity, which enables above-chance performance, but does not involve a perception 

of conscious content (Lamme, 2010). The frontal peak (Fig. 5F) at 300 ms may indicate that 

feedforward activity has reached the frontal lobe, which according to the earlier discussion can be 

sufficient for solving the perceptual task, but not the conceptual task. This would also explain why 

the P3a time range classified worse than the VAN time range since activity based on feedforward 

activity cannot be sustained if it is not recurrently processed, according to Lamme. This might also 

explain why the VAN time range in the conceptual task was worse than in the perceptual task for 

classification of Almost Clear Experiences (Fig. 6B). Again, the feedforward activity can be 

sufficient for solving the perceptual task. Differing from the classification of Weak Glimpses, 

however, was the finding that the P3a time range, for either task, was significantly better than VAN 

range activity in the conceptual task. This may be explained by recurrent interactions, as witnessed 

by the conscious perception of (ambiguous) content (Lamme, 2010). These allow in the conceptual 

task for a consistent strategy where the semantics are extracted as might be indicated by the rise in 

classification accuracy after 300 ms (Fig. 5C). Thus the differences found for graded ratings here 

may thus be consequences of differences in available cognitive strategies. It should be emphasized 

that these interpretations are tentative interpretations of why we see the differences that we do and 

were not a priori formed hypotheses.

For future experiments into whether task requirements, or other changes in cognitive context, affect 

which NCCs are found, we here propose that the greatest differences should be expected to be 
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found for the graded ratings, Weak Glimpses and Almost Clear Experience (Fig. 6B), the theoretical

reason being that these are the ratings where cognitive strategies should differ the most. For Clear 

Experiences, all cognitive strategies should in principle be available. For example, one can 

explicitly compare what the letters were instead of just comparing shapes. For No Experiences the 

cognitive strategy may be expected to be the same across tasks: first, ascertain the lack of 

information for the task at hand, second, carry out a random response, as participants were 

instructed to in case of No Experience. The behavioural results in terms of response times (Fig. 2B) 

support that cognition is similar across tasks for the No Experiences, but that it differs for all the 

other ratings. In further support of the strategy being similar for No Experiences, we found that 

classification accuracies peaked around the same time across tasks both in occipital sources (Figs. 

4A & E: ~170 ms) and frontal sources (Figs. 5A & E: ~300 ms) (and also in temporal sources (Sup. 

Figs. 1A & E: ~ 300 ms) and parietal sources (Sup. Figs. 2A & E: ~ 170 ms). In general, it seems 

difficult to incorporate the different peaks found between and within tasks into a non-integrative 

view whereas an integrative view such as REFCON offers a cohesive explanation.

One potential concern about doing a between participants analysis is that any differences found may

be driven by differences in intercepts between the 2 groups of participants. This does not seem to be

the case in this analysis since No Experiences and Clear Experiences have comparable peaks and 

have comparable classification accuracies between the 2 tasks (Fig. 6B). The difference between 

tasks seems to be uniquely driven by differences in the NCCs for Weak Glimpses and Almost Clear 

Experiences, which are plausibly related to differences in cognitive strategy that give rise to 

differences in the NCCs based on cognitive context, i.e. NCC-context(s).

When choosing between an integrative and a non-integrative account, it is important to recognize 

that, in principle, no single experiment can decide between the two. Proponents of non-integrative 

accounts, who believe there is one unique NCC-proper, can with no logical fault insist that all 

confounds have not been accounted for yet, and that that is why we find differing NCCs between 

tasks in this experiment. We do propose, however, that an integrative view explains the differences 
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that different cognitive contexts induce in a more elegant and cohesive way than non-integrative 

views. It can be argued that the non-integrative framework has been at a standstill for some time; no

matter whether someone espouses late frontal activity or early occipital activity as the NCC-proper, 

both sides agree that both are almost always elicited by experimental contrasts of perceptual 

consciousness, but with alterations between paradigms. From the viewpoint of there existing an 

NCC-proper, these alterations are seen as noise. From the viewpoints of there existing multiple 

NCC-contexts, these alterations are seen as signal that can be predicted and explained where 

REFCON is one possible and plausible answer, namely that what correlates best with perceptual 

consciousness is dependent on what cognitive strategies one's degree of perceptual consciousness 

allows for in the current cognitive context. Of course, many more experiments need to be done to 

convincingly argue for the usefulness of REFCON or any other integrative theory. Based on this 

experiment, it seems that especially neural correlates of Weak Glimpses and Almost Clear 

Experiences may be expected to differ between different cognitive contexts.

Conclusions
Task requirements affected when and where in the brain we found the neural activity that correlated 

the best with perceptual consciousness. They affected whether brain activity could classify graded 

ratings: in the perceptual task early activity showed a graded pattern, < 320 ms, whereas in the 

conceptual task late activity, > 320 ms, showed the most graded pattern.

Occipital and parietal sources provided more accurate classification of extreme ratings of perceptual

consciousness than frontal sources did.

We argue that these results speak against a view of perceptual consciousness, where perceptual 

consciousness is realized by one unique spatio-temporal pattern of activity, a so-called NCC-proper.

Instead our data are compatible with an integrated view of perceptual consciousness and cognitive 

context.

For vision, the realization of perceptual consciousness is thus more dependent on occipital activity 
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than on frontal activity, but in terms of latency, the abstraction level of the task determines when 

perceptual consciousness can be classified: early on, < 320 ms, for the perceptual task, and later on, 

> 320 ms, for the conceptual task. This study points towards the necessity of investigating 

perceptual consciousness in differing cognitive contexts.
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Appendices:

Appendix A:

The full model

We fitted a mixed model based on 5 fixed effects: Time Range (2 levels: VAN; P3a), Task (2 levels: 

perceptual; conceptual), Lobe (4 levels: occipital; frontal; temporal; parietal), Actual PAS (4 levels: 

No Experience; Weak Glimpse; Almost Clear Experience; Clear Experience) and Classified PAS (4 

levels: No Experience; Weak Glimpse; Almost Clear Experience; Clear Experience). a random 

intercept for each Participant (10) and Classified PAS as a random effect for each Participant, whose

addition to the model resulted in a significant change in log-likelihood: χ2(9) = 52.6, p < 0.001. The 

4 remaining effects did not: Time Range: χ2(2) = 0.00, p = 1.0; Lobe: χ2(9) = 0.00, p = 1.0; Actual 

PAS: χ2(9) = 0.00, p = 1.0; Task: χ2(2) = 0.00, p = 1.0.

Optimization procedure

For finding the best compromise between an explanatory and a parsimonious model, we first 

defined the full model, which included all possible interactions and main effects. We removed one 

term, main effect or interaction, at a time and performed a model comparison by comparing the log-

likelihoods of the 2 models. 2 times the ratio between these 2 log-likelihoods approximates a χ2-

distribution whose degrees of freedom is the difference in free parameters between the 2 models. If 

the observed ratio under the χ2-distribution was associated with a p-value less than 0.05, we put that 

term back in the model before removing the next term. Thus, only parameters whose removal would

result in a significant drop in explanatory power, weighted relative to the number of parameters, 

were kept in the model. If a term was included in a higher-order interaction, it was not tested but 

left in the model.

Steps of the optimization procedure

The 5-way interaction could be removed without a significant change in log-likelihood: χ2(27) = 

20.0, p = 0.83.
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Among the 4-way interactions, the 4-way interaction: Lobe × Time Range × Task × Actual PAS, 

could be removed without a significant change in log-likelihood: χ2(9) = 0.00, p = 1.0; so could the 

4-way interaction: Lobe × Time Range × Task × Classified PAS: χ2(9) = 4.59, p = 0.87; so could the

4-way interaction: Lobe × Task × Actual PAS × Classified PAS: χ2(27) = 35.8 , p = 0.12; so could 

the 4-way interaction: Lobe × Time Range × Actual PAS × Classified PAS: χ2(27) = 36.5, p = 0.10. 

The remaining 4-way interaction: Time Range × Task × Actual PAS × Classified PAS, however, 

could not be removed without a significant change in log-likelihood: χ2(9) = 19.8, p = 0.019.

Among the 3-way interactions, the 3-way interaction: Lobe × Task × Actual PAS:  χ2(9) = 0.00, p = 

1.0, could be removed without a significant change in log-likelihood; so could the 3-way 

interaction: Lobe × Time Range × Actual PAS: χ2(9) = 0.00, p = 1.0; so could the 3-way interaction:

Lobe × Time Range × Task  χ2(3) = 0.00, p = 1.0; so could the 3-way interaction: Lobe × Task × 

Classified PAS:  χ2(9) = 4.30, p = 0.89; so could the 3-way interaction: Lobe × Time Range × 

Classified PAS:  χ2(9) = 5.40, p = 0.80. The 3-way interaction: Lobe × Actual PAS × Classified 

PAS:  χ2(27) = 75.0, p < 0.001 could not be removed without a significant change in log-likelihood. 

The remaining 3-way interactions were all part of the 4-way interaction kept in the model, thus they

too were kept in the model.

All 2-way interactions were included in one of the higher-order interactions, and they were thus 

kept in the model.

All main effects were included in one of the higher-order interactions, and they were thus kept in 

the model.

Optimal model

The optimal model thus had the probability of a given classification as dependent on the 4-way 

interaction: Time Range × Task × Actual PAS × Classified PAS; and the 3-way interaction: Lobe × 

Actual PAS × Classified PAS and the random effect of Classified PAS across Participants.
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Appendix B:

Supplementary Table 2: All statistical tests, within PAS, from the Lobe comparisons

 PAS Comparison Estimated Effect Standard Error Z-value P-value

NE Occipital versus Frontal -0.013 0.029 -0.45 0.65
NE Occipital versus Parietal 0.0042 0.026 0.16 0.87
NE Occipital versus Temporal -0.055 0.029 -1.9 0.063
NE Frontal versus Parietal 0.017 0.029 0.59 0.56
NE Frontal versus Temporal -0.042 0.032 -1.3 0.2
NE Parietal versus Temporal -0.059 0.029 -2 0.045

WG Occipital versus Frontal 0.068 0.029 2.3 0.021
WG Occipital versus Parietal 0.064 0.026 2.4 0.015
WG Occipital versus Temporal 0.074 0.029 2.5 0.012
WG Frontal versus Parietal -0.0042 0.029 -0.14 0.89
WG Frontal versus Temporal 0.0063 0.032 0.19 0.85
WG Parietal versus Temporal 0.01 0.029 0.35 0.72

ACE Occipital versus Frontal 0.097 0.029 3.3 0.0011
ACE Occipital versus Parietal -0.0028 0.026 -0.11 0.92
ACE Occipital versus Temporal 0.028 0.029 0.94 0.35
ACE Frontal versus Parietal -0.099 0.029 -3.4 0.00076
ACE Frontal versus Temporal -0.069 0.032 -2.1 0.033
ACE Parietal versus Temporal 0.031 0.029 1 0.3

CE Occipital versus Frontal 0.029 0.029 0.99 0.32
CE Occipital versus Parietal -0.015 0.026 -0.58 0.56
CE Occipital versus Temporal 0.046 0.029 1.6 0.12
CE Frontal versus Parietal -0.044 0.029 -1.5 0.13
CE Frontal versus Temporal 0.017 0.032 0.52 0.61
CE Parietal versus Temporal 0.061 0.029 2.1 0.038
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Appendix C:

Supplementary Table 3: All statistical tests, within PAS, from the Time Range × Task interaction

 PAS Comparison Estimated Effect Standard Error Z-value P-value

NE VAN PC versus VAN CC 0.024 0.046 0.52 0.6
NE VAN PC versus P3a PC 0.022 0.037 0.59 0.55
NE VAN PC versus P3a CC -0.039 0.046 -0.85 0.39
NE VAN CC versus P3a PC -0.0014 0.046 -0.03 0.98
NE VAN CC versus P3a CC -0.063 0.046 -1.4 0.17
NE P3a PC versus P3a CC -0.061 0.046 -1.3 0.18

WG VAN PC versus VAN CC 0.075 0.043 1.7 0.084
WG VAN PC versus P3a PC 0.078 0.037 2.1 0.038
WG VAN PC versus P3a CC 0.054 0.043 1.2 0.21
WG VAN CC versus P3a PC 0.0028 0.043 0.064 0.95
WG VAN CC versus P3a CC -0.021 0.046 -0.45 0.65
WG P3a PC versus P3a CC -0.024 0.043 -0.54 0.59

ACE VAN PC versus VAN CC 0.086 0.044 2 0.049
ACE VAN PC versus P3a PC -0.028 0.037 -0.74 0.46
ACE VAN PC versus P3a CC -0.018 0.044 -0.41 0.68
ACE VAN CC versus P3a PC -0.11 0.044 -2.6 0.0093
ACE VAN CC versus P3a CC -0.1 0.046 -2.3 0.023
ACE P3a PC versus P3a CC 0.0097 0.044 0.22 0.82

CE VAN PC versus VAN CC 0.035 0.045 0.78 0.44
CE VAN PC versus P3a PC -0.028 0.037 -0.74 0.46
CE VAN PC versus P3a CC 0.047 0.045 1.1 0.29
CE VAN CC versus P3a PC -0.062 0.045 -1.4 0.16
CE VAN CC versus P3a CC 0.013 0.046 0.27 0.78
CE P3a PC versus P3a CC 0.075 0.045 1.7 0.094
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Supplementary Figures

Supplementary Figure 1: Sample-by-sample analyses for temporal sources: the upper row of
panels (A-D) shows conceptual sources classification for No Experience (NE), Weak Glimpse

(WG), Almost Clear Experience (ACE) and Clear Experience (CE) respectively. The lower row of
panels (E-H) shows the same for the perceptual task. Mean classification accuracies across

participants, smoothed by taking every 10th sample and taking the mean across that sample and
the 10 samples on each side, are shown for all classifications. Shaded regions are standard errors
of the mean smoothed the same way. The 2 bars at the top indicate the width of the 2 time ranges

tested in other analyses. Vertical lines indicate 300 ms and 436 ms respectively.

- 41 -



Supplementary Figure 2: Sample-by-sample analyses for parietal sources: the upper row of
panels (A-D) shows conceptual sources classification for No Experience (NE), Weak Glimpse

(WG), Almost Clear Experience (ACE) and Clear Experience (CE) respectively. The lower row of
panels (E-H) shows the same for the perceptual task. Mean classification accuracies across

participants, smoothed by taking every 10th sample and taking the mean across that sample and
the 10 samples on each side, are shown for all classifications. Shaded regions are standard errors
of the mean smoothed the same way. The 2 bars at the top indicate the width of the 2 time ranges

tested in other analyses. Vertical lines indicate 170 ms and 270 ms respectively.
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Abstract

Differences in top-down expectations are known to modulate response times. In this task, we 

investigated how differences in expectations might affect a subjective dimension, namely the 

gradedness of reports of perceptual consciousness. We found that participants reported more graded 

perceptual consciousness when their expectations towards the prospective stimulus were vague, 

involving any of 8 alternatives, compared to when they were distinct and consisted of only 2 

possible alternatives. This difference in gradedness between different expectations was not 

accompanied by any solid differences in accuracy. We also found evidence of response times being 

modulated by differences in expectations, but only when participants reported that they had at least 

some experience of the target stimuli, that is when perceptual consciousness was informative. When

participants reported no experience of the stimulus, which was accompanied by chance 

performance, expectations did not modulate response times. Across these manipulations of top-

down expectation and sensory saliency, participants demonstrated excellent metacognitive 

knowledge and accurately reported when they had no conscious experience of the stimulus and no 

knowledge of the correct response. We argue that this is evidence for the exhaustiveness of the scale

we used for rating perceptual consciousness, the so-called Perceptual Awareness Scale, namely that 

participants can use it to separate unconscious states, with no information relevant for the task, from

conscious states, which were characterized by above-chance performance, that correlate with how 

clearly stimuli were perceived. We thus found evidence for top-down expectations modulating both 

perceptual consciousness and responses, but only when the responses were based on informative 

conscious states.

Keywords: perception, visibility, expectations, informativeness, metacognition
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Introduction

Human beings subjectively experience a rich visual world full of different objects. Looking at an 

object, say, a cat on a mat, one will under normal circumstances be visually conscious of that cat on 

that mat. A simple way to eliminate conscious visual content of the cat on the mat is to close one's 

eyes. From this simple example, it is natural to assume that perceptual consciousness is 

dichotomously divisible; either one is perceptually conscious of a potential visual object or one is 

not. However, there might be states that fall between conscious and unconscious. An everyday 

example of this is seeing something in the periphery of one's visual field. One may have a vague 

perception of something, and the object is not seen as clearly or vividly as something in central 

vision; thus, it seems that the concept of being conscious can be graded in terms of the vividness of 

one's experience.

Expectations regarding what one is likely to see can also shape one's conscious experience 

(Summerfield & Egner, 2009). Being on a football field may cause one to perceive a peripherally 

seen round object as a football, whereas being on a baseball field, may cause one to perceive it as a 

baseball, even if the sensory stimulation is highly similar. Other sensory modalities may of course 

also be associated with differences in consciousness and expectations, but for this study, we will use

the term “perceptual consciousness” to refer to visual experiences.

To investigate how finely perceptual consciousness can be divided, one can use subjective scales to 

let participants rate the clarity of their experiences. For example, Sergent & Dehaene (2004) argued,

based on an attentional blink task that perceptual consciousness is dichotomous such that a stimulus

is either “seen” or “not seen”. The attentional blink (Raymond, Shapiro, & Arnell, 1992) is a 

phenomenon that occurs when 2 target stimuli, T1 and T2, are presented briefly among a series of 

rapidly presented distractors. As long as one is only required to respond to one of the targets, one 

almost never misses that target. However, when responses are required to both targets, T2 is often 

not consciously perceived, presumably due to attention being directed towards T1. Any claim as to 
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how finely perceptual consciousness can be divided faces a potential concern, namely, the question 

of how many points should be used for the rating scale. This is not a trivial question since the 

number of points and the descriptions associated with them may influence how participants rate 

their perceptions. Sergent & Dehaene (2004) used a 21-point scale with 0 % and 100 % visibility at 

each end and steps of 5 % in between. Nieuwenhuis & de Kleijn (2011) performed an experiment 

similar to that of Sergent & Dehaene (2004), but had participants use a 7-point scale to rate 

perceptual consciousness. Reducing the number of scale points was based on the arguments of 

Overgaard, Rote, Mouridsen & Ramsøy (2006) that participants are unlikely to be able to 

meaningfully categorize their experiences into 21 discrete ratings. Using a reduced number of scale 

points, they found a more graded distribution of perceptual consciousness ratings than Sergent & 

Dehaene did. They also tested how the task influenced ratings of perceptual consciousness. When 

the task on T1 was made harder, participants had to indicate which of 8 different digits was shown, 

the ratings on the 7-point scale were distributed in an even more graded fashion, where all scale 

points were used. The gradedness of subjective ratings of perceptual consciousness thus seems to 

depend on both the rating scale used and the difficulty of the task, perhaps reflecting the number of 

potential targets. In the present study, we investigated how differences in top-down expectations 

might influence ratings of perceptual consciousness and objective performance, and we expected 

that less distinct expectations would result in more graded perception. What this means more 

precisely will be explicated below.

We decided to use the Perceptual Awareness Scale (PAS: Ramsøy & Overgaard, 2004), which has 4 

categorically different ratings: No Experience (NE), Weak Glimpse (WG), Almost Clear Experience

(ACE) and Clear Experience (CE) (Table 1) .

The PAS scale (Sandberg, Timmermans, Overgaard, & Cleeremans, 2010) has been shown to 

provide better fits to participant performance in terms of being more exhaustive and sensitive than 

both confidence ratings and post-decision wagering (Koch & Preuschoff, 2007) and also to provide 
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better fits than dichotomous scales (Overgaard et al., 2006). For a scale to be exhaustive, the scale 

must provide evidence that when participants claim to have no experience and no knowledge about 

what was shown (Table 1: No Experience), their performance should not be different from chance-

level performance. For a scale to be sensitive, the scale must provide points such that when 

participants claim to have (some) experience and (some) knowledge (Table 1: Weak Glimpse, 

Almost Clear Experience and Clear Experience), their performance should correlate with the clarity 

of the experience and amount of knowledge. This means that whatever difference participants claim

to feel should be reflected by a real difference in objective performance.

Table 1: The Perceptual Awareness Scale (PAS)

Label Description (from Ramsøy and Overgaard 2004)

(1) No Experience (NE)
No impression of the stimulus. All answers are seen 
as mere guesses

(2) Weak Glimpse (WG)
A feeling that something has been shown. Not 
characterized by any content, and this cannot be 
specified any further

(3) Almost Clear Experience (ACE)

Ambiguous experience of the stimulus. Some 
stimulus aspects are experienced more vividly than 
others. A feeling of almost being certain about one's 
answer

(4) Clear Experience (CE)
Non-ambiguous experience of the stimulus. No 
doubt in one's answer

Note: Scale steps and their descriptions

A goal of this study was to assess whether PAS was exhaustive and sensitive (Dienes, 2007) even 

across internal differences in top-down expectations and external differences in sensory saliency. 

Based on the results of Nieuwenhuis & de Kleijn (2011) and on the notion that top-down 

expectations can shape our perception (Summerfield & Egner, 2009), we expected that the more 

vague one's expectations towards prospective stimuli were, the more graded the distribution of PAS 

- 5 -



ratings would be. We operationalized gradedness as the prevalence of non-extreme ratings, i.e. 

Weak Glimpses and Almost Clear Experiences (Table 1).

Finally, because expectations are known to speed up response times (Doherty, Rao, Mesulam, & 

Nobre, 2005; Posner, 1980), we also included an analysis of response times as a further test of our 

predictions.

Methods

Participants

29 participants, 18 women and 11 men, with normal or corrected-to-normal vision, provided 

informed written consent, and the study took place under the approval of the Institutional Review 

Board of Vanderbilt University. 6 participants were excluded from the analyses: 2 due to instability 

issues of the experimental programme, 2 due to failing to use the full range of possible subjective 

reports and finally, 2 due to shifts in their criterion in the midst of the experiment. In the latter case, 

both participants only started using the Clear Experience rating about halfway into the experiment.

Stimuli and procedure

Participants were seated 45 cm from a CRT-monitor running with a resolution of 1024 × 768 pixels 

and a refresh rate of 85 Hz. Target stimuli consisted of Arabic numerals ranging from 2-9, presented

using the “digital-k” font (Fig. 1)  (http://gnome-look.org/content/show.php/DigiTalk-mono+

%5Bdigital+clock+font%5D?content=132902, [date last accessed: 31 July 2015]). Participants were

instructed to report the parity of the target stimulus, i.e. whether the target digit was even or odd. 

Task difficulty was manipulated by varying the interstimulus interval between the target digit and 

the subsequent visual mask. 

All stimuli were presented in greyscale. The background was grey (RGB 128, 31.0 cd/m2). Each 

trial (Fig. 1) began with a white (RGB 255, 115 cd/m2) cue, indicating which digits could be shown 

during the trial. This cue was always valid. The cue always consisted of an equal amount of even 
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and odd digits. The number of alternatives (NoA) cued consisted of either 8, 4 or 2 digits. The cues 

were presented in a blocked fashion such that the same cue condition would repeat 12 times before 

a new cue condition was presented. This was done to keep top-down expectations stable over a 

series of trials and to strengthen them. Whenever a new cue appeared, it was accompanied by a 

high-pitch tone to inform participants that a new block of cues was coming up. Trials were self-

paced, and each trial was initiated when participants pressed the space-bar. 

Figure 1: Experimental paradigm. A cue was presented, creating a top-down expectation as to
which digits could be presented. The Number of Alternatives was one of 3 levels (2, 4 or 8

alternatives). A cue was repeated for 12 trials and was then changed. A high-pitched sound alerted
participants whenever the cue changed. A fixation cross (500 ms) was followed by a delay, to avoid

forward masking. A target digit (in a digital font) was then presented between 1 and 6 frames
(frame = 11.8 ms), which was followed by a backward mask made of random lines presented for

30 frames. An objective response was prompted as to whether the presented digit was even, e, or
odd, o. Finally, following an auditory cue, signalling that the objective response had been made,
participants reported perceptual consciousness of the target by pressing one of the buttons 1-4.
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A black (RGB 0, 1.77 cd /m2) fixation cross appeared for 500 ms, followed by an empty screen for 

500 ms, then a grey (RGB 140, 36.5 cd/m2) low-contrast target digit, brighter than the background, 

was then presented for a duration of 1-6 frames (11.8-70.6 ms). A slight jitter was applied to the 

position of the target digit, randomly drawn from a uniform distribution that fell within 0.5  of the

fixation point. The target digit was followed by a backward pattern mask, which was randomly 

generated on each trial, consisting of 250 white (RGB 255, 115 cd/m2) lines whose endpoints were 

randomly chosen from a Gaussian distribution centred at fixation with a standard deviation of 6 ° of

visual angle in both the x- and y-directions. The mask was presented for 353 ms (30 frames). This 

was followed by a visual prompt, indicating that the participant should press either e, for even, or o, 

for odd, as quickly and as accurately as possible. An auditory signal indicated that the response had 

been made and signalled that participants should rate their subjective experience using the 

Perceptual Awareness Scale (Table 1) (Ramsøy & Overgaard, 2004). This was done using the 

buttons 1-4 (upper-left corner). Each participant performed a total of 864 experimental trials. 

PsychoPy 1.81.03 (Peirce, 2009) was used to run the experiment. Before the actual experiment was 

run, 18 practice trials were run with representative target durations, and participants were instructed 

to use the same criterion for rating perceptual consciousness throughout the experiment.

Psychometric curves

We modelled performance and average PAS Rating by using a sigmoid function (Sandberg et al., 

2010; Windey, Gevers, & Cleeremans, 2013).

Equation 1: f ( x )=a+
b−a

1 +e
c−x

d

The 4 free parameters of this function represent the following: a is the lower asymptote, b is the 
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upper asymptote, c is the inflexion point of the sigmoid function, or threshold, and d is a measure of

the steepness of the curve at the point of inflection. When d goes towards infinity, the function goes 

towards a linear function, and when d goes towards 0, the function goes towards a step function. A 

unique function was fitted for each participant and for each of the 3 levels of Number of 

Alternatives (NoA: 2, 4 or 8). Mixed model analyses (McCulloch & Neuhaus, 2005) were applied 

to investigate how top-down expectations (NoA) affected perceptual consciousness and objective 

performance. We analysed results around the perceptual thresholds estimated (Equation 1) because 

this is where the greatest variation in perceptual consciousness is expected. 

Factors of interest for the near-threshold analyses

The factor Number of Alternatives (NoA) reflected the manipulation of top-down expectations with 

its 3 levels, 2, 4 and 8. We estimated the perceptual threshold based on Equation 1 below and 

defined 3 target durations of interest, below threshold, at threshold and above threshold. The final 

factor in our analyses was perceptual consciousness with 4 levels: No Experience, Weak Glimpse, 

Almost Clear Experience and Clear Experience.

Results

Accuracy

Fits of the sigmoid function to the mean level of performance averaged across all participants 

suggested that there was not much difference between the functions underlying accuracy (Fig. 2).

Even more so, Bayesian t-tests (Rouder, Speckman, Sun, Morey, & Iverson, 2009), revealed that the

data supported the null hypothesis that the c-parameters were of similar magnitude: Number of 

Alternatives 2 versus Number of Alternatives 4, BFNULL = 2.10 (±0.02 %); Number of Alternatives 2

versus Number of Alternatives 8, BFNULL = 1.37 (±0.02 %); Number of Alternatives 4 versus 

Number of Alternatives 8, BFNULL = 3.29 (±0.02 %). The prior for these tests were all Cauchy-

distributed with the scale set at √2/2 (Morey & Rouder, 2011).
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Figure 2: Psychometric curves for proportion correct for each of the 3 conditions for top-down 
expectations. There are no significant differences between lower asymptotes, upper 
asymptotes, inflexion points or steepness of the curves.

Average PAS Rating

Judging from the mean sigmoid function calculated across all participants' individual parameters, 

there was not much difference between the function underlying average PAS Rating across the 

different number of alternatives used (Fig. 3).

Bayesian t-tests revealed that the data again favoured that the c-parameters were of similar 

magnitude: Number of Alternatives 2 versus Number of Alternatives 4, BFNULL = 2.33 (±0.02 %); 

Number of Alternatives 2 versus Number of Alternatives 8, BFNULL = 2.05 (±0.02 %); Number of 

Alternatives 4 versus Number of Alternatives 8, BFNULL = 3.34 (±0.02 %). The priors for these tests 

were all Cauchy-distributed with the scale set at √2/2.

Differences around threshold

We expected differences to be greatest around the subjective perceptual threshold, estimated by the 

c-parameters (Fig. 3), which we collapsed across the different Numbers of Alternatives because 

there was evidence they were of similar magnitude (μPAS = 2.92 frames, SDPAS = 0.323). We thus 

analysed 3 target durations more thoroughly, below threshold (2 frames; ~23.5 ms), at threshold (3 
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frames; ~35.3 ms) and above threshold (4 frames; ~47.1 ms).

Figure 3: Psychometric curves for average rating on the Perceptual Awareness Scale for each of
the 3 conditions for top-down expectations. There are no significant differences between lower

asymptotes, upper asymptotes, inflexion points or steepness of the curves.

For all of the mixed models below, we aimed at finding the best compromise between an 

explanatory and a parsimonious model. First, we defined the full model, which included all possible

interactions and main effects. We removed one term, main effect or interaction, at a time and 

performed a model comparison by comparing the log-likelihoods of the 2 models. 2 times the ratio 

between these 2 log-likelihoods approximates a χ2-distribution whose degrees of freedom is the 

difference in free parameters between the 2 models. If the observed ratio under the χ2-distribution 

was associated with a p-value less than 0.05, that term was kept in the model. Subsequently the next

term was tested. Thus, only parameters whose removal would result in a significant drop in 

explanatory power, weighted relative to the number of parameters, were kept in the model. If a term

was included in a higher-order interaction, it was not tested but left in the model.

Distributions of ratings

We modelled the frequency of PAS Ratings using a generalized linear mixed model based on the 
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assumption that the data were Poisson-distributed, because they were count data (Fig. 4). We tested 

the fixed effects of PAS (4 levels: No Experience, Weak Glimpse, Almost Clear Experience or Clear

Experience), Number of Alternatives (3 levels: 2, 4 or 8), Target Duration (3 levels: 2, 3 or 4 

frames) and all their interactions. A unique intercept was modelled for each participant. By doing 

log-likelihood comparisons between models, we found that the optimal model included the 2-way 

interaction PAS Rating × Target Duration, χ2(6) = 4564, p < 0.001, and the 2-way interaction PAS 

Rating × Number of Alternatives, χ2(6) = 15.93, p = 0.014. All main effects were thus kept in the 

model. The 3-way interaction was removed from the model,  χ2(12) = 13.92, p = 0.31, and so was 

the 2-way interaction Target Duration × Number of Alternatives,  χ2(4) = 4.446, p = 0.35.

Figure 4: Mean number of times each rating on the Perceptual Awareness Scale (Table 1) was
used below threshold, at threshold, 3 frames, and above threshold for each of the 3 conditions of
top-down expectations (Number of alternatives). Error bars are 95 % confidence intervals. Model
comparisons and statistical testing revealed that 8 alternatives was associated with fewer Clear

Experiences (CE) and more Weak Glimpses (WG) than 2 alternatives. Below threshold participants
rated most trials as No Experiences (NE) or Weak Glimpses, while above threshold this shifted to

them rating most trials as Almost Clear Experiences (ACE) or Clear Experiences. At threshold,
participants used all gradations of the scale.

The PAS Rating × Target Duration interaction indicated that the frequency of PAS Ratings differed 

between Target Durations, with low ratings, No Experience and Weak Glimpse, being most frequent
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below threshold and high ratings, Almost Clear Experience and Clear Experience, being most 

frequent above threshold. At the subjective threshold, middle ratings, Weak Glimpse and Almost 

Clear Experience, were the most frequent (Fig. 4). This corroborated that the threshold is around a 

target duration of 3 frames.

More interestingly, Number of Alternatives also interacted with PAS Rating, indicating that 

participants rated perceptual consciousness differently dependent on the number of alternative 

stimuli that could have been shown. Subsequent tests revealed that this interaction effect was 

primarily driven by participants reporting fewer Clear Experiences when Number of Alternatives 

was 8 compared to when Number of Alternatives was 2, z = 3.31, p < 0.001, and also by 

participants reporting more Weak Glimpses when the Number of Alternatives was 8 compared to 

when Number of Alternatives was 2, z = 2.01, p = 0.044. These results provide evidence for our 

expectation that vague, (Number of Alternatives: 8), top-down expectations should result in more 

graded distributions of PAS ratings compared to more distinct expectations, (Number of 

Alternatives: 2).

Accuracy

We modelled accuracy based on the same fixed and random effects as above, but assumed that the 

data were binomially distributed (Fig. 5). We found that the optimal model included the 2-way 

interaction PAS Rating × Target Duration, χ2(6) = 117, p < 0.001, and thus the main effects of PAS 

Rating and Target Duration. The 3-way interaction was removed from the model, χ2(12) = 10.6, p = 

0.56, so was the 2-way interaction PAS Rating × Number of Alternatives, χ2(6) = 4.69, p = 0.58, the 

2-way interaction Number of Alternatives × Target Duration, χ2(4) = 2.99, p = 0.56, and the main 

effect of Number of Alternatives, χ2(2) = 5.44, p = 0.066.

Thus, the shifts in the gradedness of distributions of PAS ratings could not be explained by 

significant differences in accuracy between different top-down expectations.
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The PAS Rating × Target Duration interaction was driven by significant differences in accuracy for 

Weak Glimpse, Almost Clear Experience and Clear Experience between Target Durations. For these

3 ratings, a Target Duration of 4 frames resulted in a significantly higher accuracy than a Target 

Duration of 3 frames, which in turn resulted in a significantly higher accuracy than a Target 

Duration of 2 frames did, all z's > 4.31, all p's < 0.001. For No Experience, there were no significant

differences, all z's < 1.25, all p's > 0.21.

The finding that accuracy for No Experience was not different from chance in any of the conditions 

(Fig. 5) supports the proposal that the Perceptual Awareness Scale is exhaustive (Dienes, 2007).

Figure 5: Mean proportion correct for each rating on the Perceptual Awareness Scale (Table 1)
shown below threshold, at threshold, 3 frames, and above threshold for each of the 3 conditions of
top-down expectations (Number of alternatives). Error bars are 95 % confidence intervals. Model

comparisons and statistical testing revealed that proportions correct for Weak Glimpses (WG),
Almost Clear Experiences (ACE) and Clear Experiences (CE) interacted with objective differences
in stimuli, i.e. whether the stimulus was presented below, at or above threshold. No Experiences
(NE) did not interact however and was not significantly different from chance as judged by the

confidence intervals. No significant effects or interactions were found for differences in top-down
expectations (Number of Alternatives).

Null hypothesis testing of accuracy for No Experience

In this study, we were not able to find any evidence of No Experiences being affected by differences

in top-down expectations or sensory saliency, but as the old adage goes: “absence of evidence is not
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evidence of absence”, thus we used Bayesian testing to test the null hypotheses that accuracy for No

Experiences was equal across all differences.

We found some evidence for accuracy being equal across Number of Alternatives: Number of 

Alternatives 2 versus Number of Alternatives 4: BFNULL = 2.77; Number of Alternatives 4 versus 

Number of Alternatives 8: BFNULL = 2.85; and Number of Alternatives 2 versus Number of 

Alternatives 8: BFNULL = 4.57.

We also found evidence for accuracy being equal across differences in sensory saliency: below 

threshold versus at threshold: BFNULL = 2.31; below threshold versus above threshold: BFNULL = 

4.39; and at threshold versus above threshold: BFNULL = 3.25.

For all the analyses above, we used a Cauchy distribution as the prior distribution with a scale 

parameter of √2/2 (Morey & Rouder, 2011).

These analyses support that the accuracy of responses based on No Experiences is independent of 

both sensory saliency and top-down expectations.

Response times

An analysis of response times was included as a further check that our manipulation of top-down 

expectations really did work (Doherty et al., 2005; Posner, 1980).

We log transformed the response times of participants and modelled them the same we did accuracy

and frequency of PAS Ratings, but assumed that they were normally distributed (Fig. 6). We found 

that the optimal model included the 2-way interaction PAS Rating × Target Duration, χ2(12) = 33.5, 

p < 0.001, and the 2-way interaction PAS Rating × Number of Alternatives, χ2(6) = 20.2, p = 0.0025.

All main effects were thus included in the model. The 3-way interaction was removed, χ2(12) = 

17.7, p = 0.12, and so was the 2-way interaction Number of Alternatives × Target Duration, χ2(4) = 

3.76, p = 0.44.

The PAS Rating × Number of Alternatives interaction was driven by response times for Weak 
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Glimpse being faster for 2 alternatives: Number of Alternatives 2 versus 4, z = 3.75, p < 0.001, and 

Number of Alternatives 2 versus 8, z = 2.27, p = 0.023. The same was the case for Almost Clear 

Experience: Number of Alternatives 2 versus 4: z = 3.78, p < 0.001; Number of Alternatives 2 

versus 8: z = 2.00, p = 0.046; and for Clear Experience, Number of Alternatives 2 versus 4: z = 2.86,

p = 0.0042; Number of Alternatives 2 versus 8: z = 4.28, p < 0.001. These effects provided evidence

that top-down expectations sped up response times the more distinct they were, indicating that our 

manipulation of top-down expectations worked as intended (Doherty et al., 2005; Posner, 1980). 

Interestingly, however, top-down expectations only sped up response times for Weak Glimpse, 

Almost Clear Experience and Clear Experience.

Figure 6: Mean response times for each rating on the Perceptual Awareness Scale (Table 1)
shown below threshold, at threshold, 3 frames, and above threshold for each of the 3 conditions of
top-down expectations (Number of alternatives). Error bars are 95 % confidence intervals. Model

comparisons and statistical testing revealed that response times for Weak Glimpses (WG), Almost
Clear Experiences (ACE) and Clear Experiences (CE) interacted both with objective differences in

stimuli, i.e. whether the stimulus was presented below, at or above threshold and differences in
top-down expectations (Number of alternatives). No Experiences (NE) did not interact however and

was not significantly different from chance as judged by the confidence intervals.

The PAS Rating × Target Duration interaction was driven by response times for Weak Glimpse 

being faster for Target Durations of 4 frames than response times for Weak Glimpse for both Target 
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Durations of 3 frames, z = 2.63, p = 0.0086, and Target Durations of 2 frames, z = 3.09, p = 0.0020 

and by faster response times for Almost Clear Experience for Target Durations of 4 frames than 

response times for Almost Clear Experience of 3 frames, z = 3.24, p = 0.0012, but not significantly 

faster than response times for Almost Clear Experience of 2 frames, z = 1.80,  p = 0.071. These 

effects provided evidence that response times for graded responses, Weak Glimpse and Almost 

Clear Experience, speed up as sensory saliency increased.

In general, these results provide evidence for top-down expectations and sensory saliency affecting 

response times when perceptual consciousness is rated as Weak Glimpse or clearer.

The absence of significant effects on No Experience in terms of objective performance prompted a 

further Bayesian investigation into whether there was evidence of response times being similar for 

No Experience independently of Target Duration and Number of Alternatives, which would show 

that top-down expectations and sensory saliency only affect response time when perceptual 

consciousness is rated as Weak Glimpse or clearer.

Null hypothesis testing of response times for No Experience

For all the analyses below, we used a Cauchy distribution as the prior distribution with a scale 

parameter of √2/2 (Morey & Rouder, 2011).

For No Experience, we found evidence for the null hypothesis that response times did not differ 

across Target Durations: below versus at threshold: BFNULL = 3.75; below versus above threshold: 

BFNULL =  4.36; at versus above threshold: BFNULL = 4.57.

For No Experience, we also found evidence for the null hypothesis across Number of Alternatives: 

Number of Alternatives 2 versus 4: BFNULL = 4.57; Number of Alternatives 4 versus 8: BFNULL = 

3.19 and Number of Alternatives 2 versus 8: BFNULL = 3.14.

These results expand on the earlier tests and provide evidence that expectations and sensory 

saliency only affect response times when perceptual consciousness is rated as Weak Glimpse or 
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clearer.

Bayesian follow-up on the effect of Number of Alternatives when modelling accuracy

Because the p-value for removing the main effect of Number of Alternatives in the accuracy model 

(Fig. 5) was close to the pre-defined α-value, we decided to do a follow-up test of effect of task on 

accuracy. The priors for these tests were all Cauchy-distributed with the scale set at √2/2 (Morey & 

Rouder, 2011). We found evidence suggesting that Number of Alternatives 4 and Number of 

Alternatives 8 might be associated with lower accuracy than Number of Alternatives 2: Number of 

Alternatives 2 versus Number of Alternatives 4: BFALTERNATIVE = 3.14; Number of Alternatives 2 

versus Number of Alternatives 8: BFALTERNATIVE = 1.93; Number of Alternatives 4 versus Number of 

Alternatives 8: BFALTERNATIVE = 0.640.

Discussion

In this study, we tested the effect that top-down expectations had on performance in terms of 

accuracy, response times and ratings of perceptual consciousness.

We did not find any differences based on the individually estimated parameters based on the non-

linear function (Equation 1) (Figs. 2 & 3). These analyses, however, made it possible to estimate the

thresholds for both objective performance and perceptual consciousness. Around the threshold for 

perceptual consciousness, perceptual consciousness became more graded as expectations towards 

prospective stimuli became more vague (Fig. 4). Interestingly, these differences in gradedness based

on the distinctness of expectations were not accompanied by significant differences in objective 

accuracy, as found in memory tasks (Rademaker, Tredway, & Tong, 2012). Expectations about 

prospective stimuli thus seem capable of influencing subjective experience without significantly 

influencing objective accuracy. Accuracy for No Experiences did not significantly correlate with 

differences in top-down expectations or with differences in sensory saliency (Fig. 5). This is 

evidence of the Perceptual Awareness Scale being exhaustive (Dienes, 2007). If a scale is 

exhaustive, then when participants claim no perceptual consciousness, there should be no 
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(significant) correlation between stimulus strength and accuracy. These data indicate that this is the 

case even when participants have strong expectations towards what can be seen.

Interestingly, top-down expectations did not have a significant effect on objective accuracy, 

indicating that expectations can have an effect on the perceived clarity of one's experiences without 

affecting objective performance. We thus have provided evidence that differences in top-down 

expectations around the subjective threshold have an effect on subsequent ratings of perceptual 

consciousness, while having no statistically significant effect on accuracy. This suggests that the 

bimodal distributions of perceptual ratings that have been implicated by some studies (Del Cul, 

Baillet, & Dehaene, 2007; Sergent & Dehaene, 2004) are partly dependent on the top-down 

expectations participants may have towards what will be shown, independent of the difficulty of the

task. In other words, the bimodal distributions reported in these studies may be one end of the 

extreme, where distinct expectations, among other factors, make perceptional consciousness appear 

more bimodal than more vague expectations would have.

One potential concern about the conclusion that top-down expectations affect perceptual 

consciousness (Fig. 4), but not objective performance in terms of accuracy, was that we might have 

committed a type-II error. We investigated the non-significant main effect of expectations (Fig. 5) 

further with the use of Bayesian statistics to make certain that we did not overstate our findings. 

There was some suggestive evidence for higher accuracy when there were only 2 potential stimuli 

versus when there were 4 potential stimuli, but importantly the evidence for higher accuracy for 2 

potential stimuli versus 8 potential stimuli was less conclusive. This contrast, between 2 and 8 

potential stimuli, was where the differences in how top-down expectations affected reported 

perceptual consciousness were the greatest (Fig. 4), so any effect that expectations may have on 

accuracy is not likely to be caused by simple performance differences.

Another interesting finding of this study was the qualitative distinction between No Experiences on 

one side, and Weak Glimpses, Almost Clear Experiences and Clear Experiences on the other side. 
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Accuracy and response times for No Experiences were independent of both top-down expectations 

and sensory saliency, while accuracy and response times for the 3 other ratings were dependent on 

sensory saliency (Figs. 5 & 6), with response times furthermore dependent on top-down 

expectations (Fig. 6).

Based on these results, we suggest that a distinction is made between uninformative states, No 

Experiences, and informative states, Weak Glimpses, Almost Clear Experiences and Clear 

Experiences. Uninformative states result in random responses, which is what No Experiences did 

(Fig. 5). The response times in the current experiment may be taken as providing evidence that the 

cognition that leads to a random response is similar independently of top-down expectations and 

differences in sensory saliency (Fig. 6). We propose that uninformative states should be 

characterized by being cognitively independent of both external differences, e.g. differences in 

sensory saliency, and internal differences, e.g. differences in top-down expectations. In other words,

that the cognition involved in assessing that one has no evidence for one or the other response 

should be independent of expectations and differences in sensory saliency, which would result in 

similar response times as here.

Informative states, on the other hand, may be expected to interact with differences in top-down 

expectations, which have been found to speed motor responses (Doherty et al., 2005; Posner, 1980),

and differences in sensory saliency, which have been found to speed motor responses (Eriksen & 

Hoffman, 1972) and to increase accuracy (Sandberg et al., 2010). This is exactly what we found 

evidence of in this study (Figs. 5 & 6). Theoretically speaking, making a decision between 

responding “even” or “odd” may be seen as accumulating evidence for one or the other response. 

When accumulated evidence has crossed a threshold, a response is made (Bogacz, Brown, Moehlis, 

Holmes, & Cohen, 2006). Expectations may help resolve or bias what response should be made, 

therefore the decrease in response time. But only when participants are in an informative state can 

expectations hasten or speed up that response. They cannot, so to say, speed up the accumulation 
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process when there is nothing to accumulate.

All in all, this study raises some interesting questions. If the distinction between informative states 

and uninformative states is valid, uninformative states should also be cognitively independent of 

other external and internal differences, such as priming (Tulving & Schacter, 1990) and working 

memory load (Lavie, Beck, & Konstantinou, 2014).

There is also reason to expect neural signatures corresponding to both informative and 

uninformative states. In particular, the event-related potential P3 (Doherty et al., 2005; Polich, 

2003) may be of interest here, as its latency and amplitude have been associated with closure of 

cognitive processes. As we argued earlier, expectations may bias or resolve what response should be

made, but only if the state is informative. Thus, one may expect that interaction between 

expectations and informativeness may be neurally realized by the P3. This leads to the question of 

whether top-down expectations may interact with neural signatures of consciousness, because the 

P3 has been implicated as a neural correlate of consciousness (Dehaene, 2014), and whether this is 

dependent on the informativeness of the state (Melloni, Schwiedrzik, Müller, Rodriguez, & Singer, 

2011).

Conclusions

The gradedness of the distribution of perceptual ratings is dependent on top-down expectations, 

even when accuracy did not differ significantly across different expectation conditions. Thus, 

bimodal distributions reported in other studies may be one end of the extreme, where distinct 

expectations, among other factors, can make perceptional consciousness appear more bimodal than 

more vague expectations would have.

The findings also provided evidence for the exhaustiveness of the Perceptual Awareness Scale, with 

participants being able to accurately report when they had no experience and no knowledge about 

the correct response even across differences in sensory saliency and top-down expectations.
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We propose the idea that one can distinguish between uninformative and informative perceptual 

states. Responses based on uninformative states are cognitively independent of both internal and 

external differences, exemplified by the independence from top-down expectations and sensory 

saliency reported in this study.

Responses based on informative states, on the other hand, are characterized by correlating with both

external and internal differences, exemplified by the reduction of response times by distinct 

expectations and increased sensory saliency reported here. It is also exemplified by the increased 

accuracy by increased sensory saliency reported here.

It remains to be investigated whether the proposed cognitive independence of uninformative states 

extends to other external and internal differences, such as priming and working memory load. Also, 

the neural underpinnings of informative and uninformative states are a field that seems open to 

inquiry based on the interactions revealed in this study between informativeness and expectations. 

Especially the P3 may be interesting to investigate.
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